Ричард Фейнман - 4. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4. Кинетика. Теплота. Звук краткое содержание

4. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теплопроводность c определяется как отношение скорости переноса тепловой - фото 82

Теплопроводность c определяется как отношение скорости переноса тепловой энергии через единичную площадку к гра­диенту температуры:

Поскольку ход вычислений теплопроводности очень похож на вычисление потока заряженных частиц в ионизованном газе, то мы предлагаем читателю в виде упражнения доказать, что

при этом g1 kT средняя энергия молекулы при температуре Т Если - фото 83

при этом (g-1 )kT — средняя энергия молекулы при темпера­туре Т.

Если вспомнить о соотношении nls c 1 то теплопроводность можно записать в - фото 84

Если вспомнить о соотношении nls c =1, то теплопроводность можно записать в виде

Мы получили поистине удивительный результат. Известно, что средняя скорость молекул газа зависит от температуры и не зависит от плотности. Можно думать, что s с зависит только от размеров молекул. Таким образом, наш очень простой вывод сводится к тому, что теплопроводность c (а следовательно, и скорость потока тепла в каждом частном случае) не зависит от плотности газа! Изменение числа «носителей» энергии при изменениях плотности в точности компенсируется изменением расстояния, которое пробегает «носитель» между столкнове­ниями.

А теперь можно спросить: Действительно ли поток тепла всегда не зависит от плотности газа? Ну а если плотность стремится к нулю и в ящике совсем не остается газа? Конечно, нет! Формула (43.43), как и другие формулы этой главы, вы­ведена в предположении, что средняя длина свободного пробега между столкновениями гораздо меньше любых размеров ящика. Если плотность газа столь мала, что молекула имеет неплохие шансы пробежаться от одной стенки ящика к другой, ни разу не столкнувшись, то все вычисления этой главы рухнут. В этих случаях следует вернуться к кинетической теории и заново все детально рассчитать.

Глава 44

ЗАКОНЫ ТЕРМОДИНАМИКИ

§ 1. Тепловые машины; первый закон

§ 2. Второй закон

§ 3. Обратимые машины

§ 4. Коэффициент полезного действия идеальной машины

§ 5. Термодинами­ческая температура

§ 6. Энтропия

§ 1. Тепловые машины; первый закон

До сих пор мы рассматривали свойства вещества с атомной точки зрения, причем мы пытались, хотя бы в общих чертах, понять, что произойдет, если принять, что вещество состоит из атомов, подчиняющихся тем или иным законам. Однако вещество обладает и такими свойствами, которые можно понять, не изучая подробно его строения. Поисками со­отношений между различными свойствами ве­щества, не углубляясь в изучение внутреннего его строения, занимается термодинамика. Ис­торически термодинамика стала наукой еще до того, как более или менее точно узнали о внутреннем строении вещества.

Приведем пример: согласно кинетической теории, давление газа вызывается молекуляр­ной бомбардировкой, и нам известно, что при нагревании газа бомбардировка усиливается и давление должно повыситься. И наоборот, если внутрь ящика с газом вдвигается поршень, преодолевающий сопротивление бомбардирую­щих его молекул, то энергия этих молекул возрастает, а соответственно повышается и температура. Итак, повышая температуру внут­ри заданного объема, мы увеличиваем давление. Если же мы сжимаем газ, то повышается его температура. Используя кинетическую теорию, можно найти количественные соотношения между этими двумя эффектами, однако каж­дому понятно, что между давлением и темпе­ратурой обязательно должна существовать не­которая связь, не зависящая от деталей столк­новений.

Рассмотрим еще один пример. Многим, наверное, известно интересное свойство ре­зины — если растянуть ее, она нагреется. Если вы зажмете губами резиновую полоску и, потянув рукой, рас­тянете ее, то отчетливо почувствуете, что она нагрелась. Это нагревание обратимо, т. е. если вы, продолжая держать полоску губами, быстро отпустите ее, то возникнет столь же отчетливое ощущение холода. Это означает, что при растяжении резина нагревается, а при ослаблении натяжения она охлаждается. Наш инстинкт может нам подсказать, что нагретая резина тянет лучше: если растяжение нагревает резину, то нагрева­ние заставит ее сжаться. Действительно, если поднести к растягиваемой грузиком резиновой полоске газовую горелку, то мы заметим, что полоска резко сократится (фиг. 44.1).

Фиг 44 1 Нагретая резина Таким образом при нагревании натяжение в резине - фото 85

Фиг. 44. 1. Нагретая резина.

Таким образом, при нагревании натяжение в резине возра­стет, и это вполне согласуется с тем, что при уменьшении натяжения она остывает.

Скрытые в резине механизмы, управляющие этими эффек­тами, очень сложны. Мы опишем их с молекулярной точки зре­ния, хотя главная задача этой главы — научиться понимать связь между такими эффектами независимо от молекулярной модели. Тем не менее, именно исходя из молекулярной модели, мы можем показать, что оба эти явления тесно связаны. По­ведение резины можно объяснить так. Представьте себе, что резина, по существу, огромный клубок, состоящий из очень длинных молекул, что-то вроде «молекулярных макарон», но с небольшим дополнительным усложнением: между этими молекулярными цепочками имеются соединительные цепочки. Таким образом, моделью куска резины могут служить слип­шиеся во время варки макароны, образующие огромный ком. Когда мы растягиваем такой клубок, некоторые молекулярные цепи стремятся вытянуться в линию вдоль направления рас­тяжения. В то же время все цепи участвуют в тепловом дви­жении и непрерывно сталкиваются друг с другом. Поэтому такая цепь, когда ее растягивают, не остается в натянутом виде, так как об нее ударяют со всех сторон другие цепи и другие молекулы, и она будет вынуждена запутаться снова. Поэтому истинная причина того, почему резина все время стремится сократиться, заключается в следующем: при растяжении цепи действительно вытягиваются вдоль одной линии, но тепловые движения цепей стремятся запутать их снова и сократить их длину. Поэтому если растянуть цепи и увеличить температуру, то усилится и бомбардировка цепей, что приведет к увеличе­нию натяжения. Этим объясняется способность нагретой ре­зины поднять более тяжелый груз. Если растянутую в течение некоторого времени резину отпустить, то каждая цепь стано­вится мягче, ударяющиеся о расслабленные цепи молекулы теряют энергию, и температура падает.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x