Ричард Фейнман - 4. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4. Кинетика. Теплота. Звук краткое содержание

4. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

или Jn n v 4322 А что понимать под n и n Когда мы говорим - фото 74

или

J=(n - -n + )v. (43.22)

А что понимать под n - и n +? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны изме­рить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n - — это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n +— плотность молекул на расстоянии длины свободного пробега справа от нее.

Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозна­чим n a . Под n a (х, у, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z). Тогда

разность (n + -n - ) можно представить в виде

(n + -n - )=(dn a /dx)Dx=(dn a /dx) · 2l (43.23)

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем

J x =lv(dn a /dx) (43.24)

Мы выяснили, что поток особых молекул пропорционален про­изводной плотности, или, как иногда говорят, «градиенту плотности».

Ясно что мы сделали несколько грубых приближений Не говоря уже о том что мы - фото 75

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить v x , а разместив объемы, содержащие молекулы n + и n -, на концах перпенди­куляров к площадке, взяли перпендикуляры длиной l. Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1/ 3. Итак, более правильный ответ выглядит следующим образом:

Аналогичные уравнения можно написать для токов вдоль y- иz-направлений.

С помощью макроскопических наблюдений можно измерить ток J х и градиент - фото 76

С помощью макроскопических наблюдений можно измерить ток J х и градиент плотности dn a /dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D, Это значит, что

Мы смогли показать, что ожидаемое значение коэффициента D для газа равно

Пока мы изучили в этой главе два разных процесса подвижность дрейф молекул - фото 77

Пока мы изучили в этой главе два разных процесса: под­вижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутрен­ними силами, случайными столкновениями). Однако эти про­цессы связаны друг с другом, потому что в основе обоих яв­лений лежит тепловое движение, и оба раза в расчетах появля­лась длина свободного пробега l.

Если в уравнение 4325 подставить lvt и tmm то получится Ho mv 2зависит - фото 78

Если в уравнение (43.25) подставить l=vt и t=mm, то получится

Ho mv 2зависит только от температуры. Мы еще помним, что

1/ 2mv 2= 3/ 2kT, (43.29)

так что

J x =-mkT(dn a /dx). (43.30)

Таким образом, D, коэффициент диффузии, равен произве­дению kT на m, коэффициент подвижности:

D=mkT. (43.31)

Оказывается, что (43.31) — это точное соотношение между коэффициентами. Хотя мы исходили из очень грубых пред­положений, не нужно к нему добавлять никаких дополнительных множителей. Можно показать, что (43.31) в самом деле всегда удовлетворяется точно. Это верно даже в очень сложных слу­чаях (например, для случая взвешенных в жидкости мелких частиц), когда наши простые вычисления явно отказываются служить.

Чтобы показать, что (43.31) верно в самых общих случаях, мы выведем его иначе, используя только основные принципы статистической механики. Представьте себе, что почему-то существует градиент «особых» молекул и возник ток диффузии, пропорциональный, согласно (43.26), градиенту плотности. Тогда мы создадим в направлении оси х силовое поле так, что на каждую особую молекулу будет действовать сила F. По определению подвижности m скорость дрейфа дается соотно­шением

v др=mF. (43.32)

Используя обычные аргументы, можно найти ток дрейфа, (общее число молекул, пересекающих единичную площадку за единицу времени):

J др=n аv др. (43.33)

или

J др=n amF. (43.34)

А теперь можно так распорядиться силой F, что ток дрейфа, вызываемый силой F, скомпенсирует диффузию, тогда полный ток особых молекул будет равен нулю. В этом случае мы имеем

J х+J др=0,

или

D(dn a /dx)=n a mF. (43.35)

В этом случае «компенсации» существует постоянный (во времени) градиент плотности, равный

dn a/dx=n amF/D. (43.36)

Теперь уже легко соображать дальше! Ведь мы добились равновесия, и можем теперь применять наши равновесные за­коны статистической механики. По этим законам вероятность найти молекулу около точки х пропорциональна ехр (-U/kT), где U — потенциальная энергия. Если говорить о плотности молекул n а , то это значит:

n а n 0 e UkT 4337 Дифференцируя 4337 по х получаем или - фото 79

n а =n 0 e - UkT . (43.37) Дифференцируя (43.37) по х, получаем

или В нашем случае сила F направлена вдоль оси х и потенциальная энергия U - фото 80

или

В нашем случае сила F направлена вдоль оси х и потенциальная энергия U равна - фото 81

В нашем случае сила F направлена вдоль оси х и потенци­альная энергия U равна - Fx, a- dU/dx=F. Уравнение (43.39) принимает вид

[Это в точности уравнение (40.2), из которого мы и вывели ехр(- U/kT); круг замкнулся.] Сравнивая (43.40) и (43.36), мы получаем уравнение (43.31). Мы показали, что в уравнении (43.31), которое выражает ток диффузии через подвижность, все коэффициенты правильны, а само уравнение правильно всегда. Подвижность и диффузия тесно связаны. Эту связь открыл Эйнштейн.

§ 6. Теплопроводность

Методы кинетической теории, которую мы так успешно применяли, позволяют также рассчитать и теплопроводность газа. Если газ в верхней части ящика горячее, чем внизу, то тепло перетечет сверху вниз. (Мы предполагаем, что теплее верх­няя часть ящика, потому что в противном случае возникнут поднимающиеся вверх конвекционные токи, а этот случай уже не имеет отношения к теплопроводности.) Перенос тепла от горячего газа к холодному вызывается диффузией «горячих» молекул (т. е. молекул с большой энергией) вниз и диффузией «холодных» молекул вверх. Чтобы вычислить поток тепловой энергии, мы должны узнать сначала об энергии, переносимой через выделенную площадку сверху вниз (ее переносят дви­жущиеся вниз молекулы), потом об энергии, переносимой через эту же площадку снизу вверх (за это уже отвечают моле­кулы, поднимающиеся вверх). Разность этих потоков энергии даст нам полный поток энергии сверху вниз.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x