Ричард Фейнман - 4. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4. Кинетика. Теплота. Звук краткое содержание

4. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

N(t+dt)=N(t)-N(t)dt/t. (43.2)

Величину стоящую в левой части уравнения Ntdt можно в согласии с общими - фото 69

Величину, стоящую в левой части уравнения, N(t+dt), можно в согласии с общими правилами дифференциального исчис­ления записать в виде N(t)+(dN/dt)(dt). Сделав эту подстановку, мы приведем уравнение (43.2) к виду

Число молекул выбывших из игры за промежуток dt пропорционально числу - фото 70

Число молекул, выбывших из игры за промежуток dt, пропор­ционально числу наличных молекул и обратно пропорционально среднему времени жизни t. Уравнение (43.3) легко проинтег­рировать, если переписать его в виде

Поскольку в каждой части стоит полный дифференциал, то интеграл уравнения таков:

lnN(t)=-t/t+ постоянная, (43.5)

или, что то же самое,

N(t) =(постоянная) е - t / t . (43.6)

Мы знаем, что постоянная должна быть равна N 0 — полному числу молекул, потому что в начальный момент t=0 все моле­кулы ждут «следующего» удара. Мы можем записать наш результат в виде

N(t)=N 0 e - t / t . (43.7)

Если мы хотим определить вероятность P(t) того, что молекула не испытает столкновений, нужно величину N(t) поделить на N 0; тогда получим

P(t)=е - t / t. (43.8)

Вот наш результат: вероятность того, что какая-то молекула сможет прожить время t, не столкнувшись, равна ехр(-t/t), где t — среднее время между столкновениями. Вероятность эта начинается с 1 (очевидности) при t=0 и уменьшается по мере того, как t становится все больше и больше. Вероят­ность того, что молекула избежит столкновений за время t, равна е -1=0,37... Шансов выдержать дольше, чем среднее время между столкновениями, меньше половины. В этом нет ничего странного, потому что существует достаточно много молекул, которые избегают столкновений значительно дольше среднего времени между столкновениями, так что среднее время между столкновениями по-прежнему равно t ,

Первоначально мы определили t как среднее время между столкновениями. Сформулированный в виде уравнения (43.7) результат говорит нам, что среднее время, отсчитываемое от произвольно взятого момента до следующего столкновения, также равно т. Этот несколько удивительный факт можно продемонстрировать следующим образом. Число молекул, которые испытают их следующее столкновение в промежутке dt, отсчитанного от времени t после произвольно взятого началь­ного времени, равно N(t)dt/t. Их «промежуток времени до сле­дующего столкновения» равен, конечно, t. «Среднее время до следующего столкновения» получается обычным образом:

Среднее время до следующего столкновения= Используя полученное из 437 число Nt и вычисляя интеграл найдем что t - фото 71

Используя полученное из (43.7) число N(t) и вычисляя интеграл, найдем, что t это среднее время, отсчитанное от любого момента до следующего столкновения.

§ 2. Средняя длина свободного пробега

Есть еще возможность описать столкновения молекул, не вводя для этого времени между столкновениями. Можно оп­ределить, далеко ли успеет уйти частица между столкновениями. Если мы знаем, что среднее время между столкновениями равно t, а средняя скорость молекул равна v, то очевидно, что среднее расстояние между столкновениями, которое мы обозначим бук­вой l, равно произведению t и v;. Это расстояние между столк­новениями обычно называют длиной свободного пробега:

Длина свободного пробега l=tv. (43.9)

В этой главе мы не будем уточнять, какого рода среднее мы имеем в виду в каждом случае. Существующие разные средние — среднее, корень из среднего квадрата и т. д.— приблизительно равны и отличаются только множителями, близкими к единице. Поскольку для получения правильных множителей необходим подробный анализ, нам нет смысла очень уж стараться уточнять, какое именно среднее исполь­зуется в том или ином случае. Мы хотим еще предупредить читателей, что используемые для обозначения физических величин алгебраические символы (например, l для длины сво­бодного пробега) не являются общепринятыми просто потому, что об этом никто еще специально не договаривался.

Вероятность того, что молекула испытает столкновение, пройдя расстояние dx, равна dx/l, как вероятность столкно­вения за короткий промежуток времени dt равна dt/t. Призвав на помощь те же аргументы, что и раньше, читатель сможет показать, что вероятность того, что молекула пройдет по крайней мере расстояние х, прежде чем испытает следующее столк­новение, равна е - х / l .

Среднее расстояние, которое молекула проходит между столкновениями (длина свободного пробега l ), зависит от коли­чества молекул, ее окружающих, и от того, какого «размера» эти молекулы, т. е. от того, насколько уязвимую мишень пред­ставляют они собой. «Размеры» мишени при столкновениях обычно описывают при помощи «эффективного сечения столк­новений»; эта же идея используется и в ядерной физике или в задачах о рассеянии света.

Рассмотрим движущуюся частицу, которая проходит рас­стояние dx внутри газа, содержащего n 0 рассеивателей (молекул) в единичном объеме (фиг. 43.1).

Фиг 431 Эффективное сечение столкновения На каждой площадке единичной - фото 72

Фиг. 43,1. Эффективное сечение столкновения.

На каждой площадке единичной площади, перпендикулярной к направлению движения вы­бранной нами частицы, имеется n 0 dx молекул. Если каждая может быть представлена эффективной площадью столкновения, или, как обычно говорят, «эффективным сечением столкно­вения» s с , то полная площадь, покрываемая рассеивателями, равна s c n 0 dx.

Под «эффективным сечением столкновения» понимается площадь, в которую должен попасть центр частицы, если она должна столкнуться с заданной молекулой. Если моле­кулы выглядят как маленькие шарики (классическая кар­тина), то следует ожидать, что s с =p(r 1 +r 2 ) 2 , где r 1 и r 2 радиусы двух сталкивающихся молекул. Вероятность того, что наша частица столкнется с какой-нибудь молекулой, равна отношению площади, покрываемой рассеивающими молеку­лами, к полной площади, принятой нами за единицу. Та­ким образом, вероятность столкновения на пути dx равна s с n 0 dx:

Вероятность столкновения на пути dx =sn 0 dx. (43.10)

Мы уже отметили раньше, что вероятность столкновения на пути dx может быть записана в терминах длины свобод­ного пробега l как dx/l. Сравнивая это с (43.10), можно связать длину свободного пробега с эффективным сечением столкновения:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x