Ричард Фейнман - 4. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4. Кинетика. Теплота. Звук краткое содержание

4. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Глава 43

ДИФФУЗИЯ

§ 1. Столкновения молекул

§ 2. Средняя длина свободного пробега

§ 3. Скорость дрейфа

§ 4. Ионная проводимость

§ 5. Молекулярная диффузия

§ 6. Теплопроводность

§ 1. Столкновения молекул

До сих пор мы изучали движение молекул только при тепловом равновесии. А теперь нужно обсудить, как движутся молекулы газа, когда он близок к равновесию, но еще не достиг его полностью. Если газ слишком неравно­весен, все становится чрезвычайно сложным и разобраться в том, что там происходит, очень трудно, а вот если отклонения от рав­новесия незначительны, то задачи решаются легко. Однако, чтобы рассмотреть, что проис­ходит в таком газе, надо снова вернуться к кинетической теории. Статистическая меха­ника и термодинамика пригодны, когда имеется равновесие, а чтобы проанализировать то, что происходит при отклонении от равновесия, приходится, так сказать, перебирать атом за атомом.

В качестве простого примера неравновесной задачи рассмотрим диффузию ионов в газе. Предположим, что в газе содержится немного ионов — электрически заряженных молекул. Если к газу приложить электрическое поле, то на каждый ион будет действовать сила, отличающаяся от сил, действующих на нейт­ральные молекулы. Если бы других молекул не было, то ион двигался бы с постоянным ускорением, пока не наткнулся бы на стенку ящика. Но наличие других молекул меняет дело: скорость иона возрастает лишь до тех пор, пока он не ударится о молекулу и не по­теряет своего импульса. После этого он снова начинает ускоряться, но вновь теряет импульс. В результате ион вынужден двигаться по ло­маному пути, хотя все же в конце концов он движется в направлении электрического поля.

Мы замечаем, таким образом, что ион «дрейфует» со средней скоростью, пропорциональной электрическому полю; чем силь­нее поле, тем быстрее движется ион. Конечно, пока существует поле и пока ион продолжает двигаться, не может быть и речи о тепловом равновесии. Система стремится прийти к равно­весию, но для этого нужно, чтобы все ионы приклеились к стенке ящика. С помощью кинетической теории возможно вычислить скорость дрейфа ионов.

Наших математических познаний еще недостаточно, чтобы точно вычислить все, что произойдет, но мы можем получить приближенное решение, которое правильно передаст все суще­ственные особенности явления. Мы можем определить зави­симость эффекта от давления, температуры и т. п., но не в наших силах вычислить точно все коэффициенты, стоящие перед этими сомножителями. Поэтому не будем мучить себя заботой о точных значениях таких коэффициентов. Получить их можно только после очень тонкого математического анализа.

Прежде чем рассуждать о том, что происходит в отсутствие равновесия, посмотрим повнимательнее на равновесный газ. Необходимо, например, знать среднее время между двумя последовательными столкновениями молекулы.

Каждая молекула непрерывно сталкивается с другими молекулами. Происходят все эти столкновения, конечно, случайно. Если выбрать какую-нибудь молекулу, то за доста­точно долгое время Т она получит определенное число N ударов. Если увеличить промежуток времени вдвое, то и число ударов возрастет вдвое. Таким образом, число столкно­вений пропорционально времени Т. Это можно выразить сле­дующим образом:

N=T/t (43.1)

Мы записали постоянную пропорциональности в виде 1/t, где t имеет размерность времени. Постоянная t — это среднее время между столкновениями. Предположим для примера, что за час происходит 60 столкновений; тогда t равно одной минуте. Мы будем говорить, что t (одна минута) это среднее время между столкновениями.

Часто нам придется искать ответ на такой вопрос: Какова вероятность того, что молекула испытает столкновение в те­чение малого промежутка времени dt? Мы догадываемся, что эта вероятность равна dt/ t . Попытаемся, однако, привести более убедительные аргументы. Предположим, что в нашем распоряжении имеется очень большое число N молекул. Сколько молекул из этого числа столкнется в течение интервала вре­мени dt? Если молекулы находятся в равновесном состоянии, то ничего не будет меняться в среднем со временем. Таким образом, N молекул, пробывших в ящике в течение интервала dt, испытают столько же соударений, сколько одна моле­кула за время Ndt. Число соударений одной молекулы за большое время Ndt известно — это Ndt/t. А если число соударений между N молекулами за время dt равно Ndtlt, то вероятность удара для одной молекулы равна 1/N части этой величины, или (1/N)(Ndt/t)=dt/t (как мы и говорили с самого начала). Таким образом, относительное число молекул, сталкивающихся за время dt, грубо говоря, равно dt/t. Если, например, t равно одной минуте, то за секунду столкнется 1/ 60часть всех молекул.

Это означает, конечно, что если в данный момент 1/ 60часть молекул подошла достаточно близко к тем, с кем они должны столкнуться, то их столкновение произойдет в течение сле­дующей минуты.

Когда мы говорим, что t (среднее время между столкнове­ниями) равно одной минуте, то мы вовсе не считаем, что все столкновения разделены в точности минутными интервалами. Частица, столкнувшись, совсем не выжидает потом еще минуту, чтобы нанести следующий удар. Промежутки между последо­вательными столкновениями весьма различны. В дальнейшем, правда, нам это не понадобится, но можно задать такой во­прос: А чему все же равно время между столкновениями? Мы уже знаем, что в приведенном выше примере среднее время равно одной минуте, но нам, быть может, нужно знать, какова вероятность того, что молекула не столкнется ни с кем в течение двух минут?

Ответим на более общий вопрос: Какова вероятность того, что молекула не испытает ни одного столкновения за время t? Начнем в какой-то произвольный момент времени, который мы назовем t=0, следить за определенной молекулой. Какова вероятность того, что до момента встречи ее с другой молекулой пройдет время t? Чтобы вычислить вероятность, посмотрим, что случится со всеми N 0 молекулами, находящимися в ящике. Пока мы ждем в течение времени t, некоторые молекулы ис­пытают столкновения. Пусть N(t) — число молекул, не испы­тавших столкновений за время t. Мы можем определить N(t), ибо нам известно, как это число меняется со временем. Это число N(t), естественно, меньше общего числа молекул N 0 . Если мы знаем, что за время t избежать столкновений удалось N(t) молекулам, то N(t+dt) (число молекул, которым удалось сделать это за время t+dt) меньше N(t) на число молекул, все-таки столкнувшихся за время dt. Мы уже раньше научи­лись определять число молекул, которым не удалось избежать столкновений за время dt, с помощью среднего времени т: dN=N(t)dt/t. Мы получаем уравнение

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x