Ричард Фейнман - 3a. Излучение. Волны. Кванты
- Название:3a. Излучение. Волны. Кванты
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 3a. Излучение. Волны. Кванты краткое содержание
3a. Излучение. Волны. Кванты - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Поставим теперь желтый фильтр на четвертый фонарь и попробуем путем смешивания подобрать такой же желтый цвет. (Яркость четвертого фонаря должна находиться в пределах яркости первых трех, иначе мы не сумеем создать смешанный цвет точно такой же яркости.) Оказывается, мы можем получить желтый цвет; достаточно только смешать зеленый и красный, а для оттенка добавить немного синего. После этого уже нетрудно поверить, что при соответствующих условиях можно в точности подобрать любой заданный цвет.
Давайте обсудим теперь законы смешивания цветов. Прежде всего, как мы уже говорили, один и тот же цвет может быть создан различными спектральными распределениями; далее, мы заметили, что «каждый» цвет может быть получен смешиванием трех основных цветов: красного, синего и зеленого. Наиболее интересное свойство смеси цветов состоит в следующем: пусть задан свет определенного состава, назовем его X, который на глаз неотличим от другого света Y (они могут иметь разные спектральные распределения, но зрительно кажутся одинаковыми); назовем эти цвета «одинаковыми» в том смысле, что глаз видит их как одинаковые, и запишем
X = Y. (35.2)
Прибавим к каждому цвету новый, скажем Z (запись X + Z означает, что два световых пучка падают на одно и то же место экрана), и точно такой же пучок света добавим к Y. Тогда один из основных законов цвета выражается так: если два спектральных распределения неразличимы на глаз по цвету, то после добавления к ним одинакового количества нового цвета смеси будут по-прежнему неразличимы:
X+Z = Y + Z. (35.3)
Мы только что смогли подобрать два одинаковых желтых цвета; если оба цвета осветить розовым светом, то они останутся одинаковыми. Итак, добавив любой цвет к одинаковым цветам, получим одинаковый цвет. Обобщая все цветовые явления этого рода, можно сказать и по-другому: если цвета двух расположенных рядом друг с другом лучей света в одних условиях выглядят одинаковыми, то при любых смешениях они останутся одинаковыми и один луч может быть заменен другим при любом смешении цветов. Важным и интересным оказывается также то обстоятельство, что совпадение цветов не зависит от свойств зрения в момент наблюдения; известно, что если долго смотреть на яркую красную поверхность или яркий красный свет, а затем взглянуть на белый лист бумаги, то он покажется зеленоватым и другие цвета также будут восприниматься с искажениями (из-за того, что мы долго перед этим смотрели на ярко-красный цвет). Пусть мы добились совпадения двух желтых цветов, а затем долго смотрели на яркий красный цвет; повернувшись снова к желтым пятнам, мы обнаружим, что они уже не кажутся нам больше желтыми (какими именно они будут казаться — я не знаю, но только не желтыми). Однако в любом случае оба цвета по-прежнему будут казаться одинаковыми, т. е. способность глаза приравнивать два цвета сохраняется, несмотря на адаптацию глаза в условиях разной интенсивности. Очевидным исключением является только случай очень малой интенсивности, когда функция зрения переходит от колбочек к палочкам; здесь уже нельзя говорить о сравнении цветов, так как система зрения совсем другая.
Второй закон смешения цветов состоит в следующем: любой цвет может быть получен смешением трех разных цветов (в нашем случае зеленого, красного и синего). Мы уже продемонстрировали на двух примерах, что смешение трех цветов может дать самые разные цвета. Описанные выше законы, кроме того, очень интересны с математической точки зрения. Для тех, кого интересует математическая сторона проблемы, мы расскажем о ней более подробно. Возьмем три наших цвета — зеленый, красный и синий, обозначим их буквами А, В и С и назовем их основными. Тогда любой цвет может быть получен смешением определенных количеств каждого из данных трех цветов: например, цвет X создается смесью количества а цвета А, количества b цвета В и количества с цвета С:
Х = аА + bB + сС. (35.4)
Составим теперь из тех же трех цветов новый цвет Y:
Y = a'A + b'B + c'C. (35.5)
Тогда смесь цветов X и Y определяется суммами их компонент в основных цветах (как следствие двух главных законов цвета, приведенных выше):
Z=X + У=(а + а) А + (b + b') В + (с + с') С. (35.6)
Это правило очень напоминает суммирование векторов, причем (а, Ь, с) играют роль компонент одного вектора, а (а' , Ь', с') — компонент второго, и новый свет Z определяется «суммой» векторов. Такое соответствие постоянно привлекало к себе внимание физиков и математиков. В частности, Шредингер написал замечательную работу о цветовом зрении, в которой он развил теорию «векторного анализа» в применении к смеси цветов.
Возникает вопрос: как нужно выбрать основные цвета? В самом деле, никакого единственно правильного выбора нет. С практической точки зрения иногда оказывается более полезным выбирать определенные три цвета, потому что они дают в смеси большее число оттенков, но мы не будем сейчас на этом останавливаться.
Любые три по-разному окрашенных пучка света могут образовать какой угодно другой цвет, если их смешать в нужной пропорции.
Возможно ли показать на опыте действие этого удивительного, фантастического правила? Возьмем вместо красного, зеленого и синего света фонари с красным, синим, желтым фильтром и посмотрим, образует ли смесь этих цветов, скажем, зеленый цвет.
Смешивая эти три новых цвета в разных пропорциях, мы получаем целый спектр разных цветов. Но после целого ряда проб и ошибок мы убеждаемся, что ничего похожего на зеленый цвет получить не удается. А можем ли мы вообще образовать зеленый цвет? Да, можем. Но каким образом? Проектируя красный свет на зеленое пятно, мы можем затем подобрать точно такой же цвет путем смешения желтого и синего! Таким путем мы составляем две комбинации одного цвета, правда немного сжульничав, так как поместили красный в другую комбинацию. Но поскольку мы уже умеем разбираться в математических ухищрениях, то прекрасно понимаем, что вместо доказательства возможности составления цвета X из трех других цветов, например желтого, красного и голубого, мы установили, что красный плюс цвет X могут быть сделаны из желтого и голубого. Перенесем теперь красный цвет в другую часть равенства и будем интерпретировать его как отрицательную величину. Следовательно, в уравнениях типа (35.4) возможны как положительные, так и отрицательные значения коэффициентов, причем отрицательным величинам придается такой смысл, что их следует перенести в другую часть равенства со знаком плюс, тогда каждый цвет может быть действительно составлен из любых трех, и говорить о каком-то «правильном» выборе основных цветов бессмысленно.
Читать дальшеИнтервал:
Закладка: