Ричард Фейнман - 3a. Излучение. Волны. Кванты
- Название:3a. Излучение. Волны. Кванты
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 3a. Излучение. Волны. Кванты краткое содержание
3a. Излучение. Волны. Кванты - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Обратимся снова к формуле (34.9) и возьмем для примера синхротрон, который разгоняет частицы до миллиарда электрон-вольт, т. е. дает частицы с рс, равным 10 9эв (ниже мы определим и энергию частиц). Пусть В = 10 4гс, или 1 ед. СИ, т. е. поле достаточно сильное, тогда R оказывается равным 3,3 м. Синхротрон КАЛТЕХа имеет радиус 3,7 м, поле чуть больше взятого нами, а энергию 1,5 млрд. эв (или Гэв), т. е. порядок всех величин тот же самый. Теперь становится понятным, почему синхротроны имеют такие размеры.
Выше мы брали импульс частиц; полная же энергия, включающая энергию покоя, дается формулой W = Ц(р2с 2+m 2с 4). Энергия покоя электрона mс 2равна 0,511·10 6эв, поэтому при импульсе рс — 10 9эв можно пренебречь величиной m 2с 4и для всех практических целей пользоваться формулой W=рс, справедливой в случае релятивистских скоростей. Фактически нет никакой разницы, когда мы говорим, что энергия электрона равна 1 Гэв или что импульс электрона, умноженный на с, равен 1 Гэв. Когда W=10 9эв, то, как легко показать, скорость частицы равна скорости света с точностью до одной восьмимиллионной!
Теперь вернемся к излучению, испускаемому такой частицей. Двигаясь по окружности с радиусом 3,3 м и длиной 20 м,частица делает один оборот примерно за то же время, за которое свет проходит 20 м. Поэтому длина волны испускаемого излучения, казалось бы, равна 20 м, т. е. лежит в области коротких радиоволн. Но, как мы уже говорили, возникают пики излучения (см. фиг. 34.3) и из-за того, что скорость электрона отличается от скорости света с на одну восьмимиллионную, ширина пиков пренебрежимо мала по сравнению с расстоянием между ними. Ускорение, определяемое второй производной по времени, приводит к появлению «фактора сокращения» 8·10 6в квадрате, потому что масштаб времени уменьшается в 8·10 6раз в области пика и входит он дважды. Поэтому эффективная длина волны должна быть в 64·10 12раз меньше 20 м, что соответствует уже области рентгеновских лучей. (На самом деле эффект определяется значением не в самом пике, а некоторой областью около пика. Это дает вместо квадрата степень 3/ 2, но все равно приводит к длинам волн, несколько меньшим, чем в видимом свете.)
Фиг. 34.5, Падающий на решетку импульс света в форме острого пика после отражения дает в разных направлениях лучи различной окраски.
Итак, если даже медленно движущийся электрон излучает радиоволны длиной порядка 20 м, то релятивистские эффекты сокращают длину волны настолько, что мы можем увидеть излучение! Очевидно, свет должен быть поляризован перпендикулярно однородному магнитному полю.
Предположим далее, что мы направили подобный пучок света (импульсы излучения возникают через большие промежутки времени, так что для простоты возьмем один такой импульс) на дифракционную решетку, состоящую из множества рассеивающих линий. Какая картина возникнет после прохождения излучения через решетку? (Казалось бы, мы должны увидеть красные, синие полосы света и т. д., если вообще мы будем видеть свет.) А что мы увидим на самом деле?
Импульс излучения попадает прямо на решетку, и все осцилляторы на линиях решетки начинают одновременно бешено колебаться туда и обратно. При этом они излучают в разных направлениях, как показано на фиг. 34.5. Но точка Р расположена ближе к одному концу решетки, и поэтому излучение попадает в нее сначала от А, потом от В и т. д., наконец, последним приходит импульс от самой крайней линии. В итоге совокупность всех отраженных волн принимает такой вид, как показано на фиг. 34.6,а. Это электрическое поле, состоящее из целого ряда импульсов, очень походит на синусоидальную волну, причем длина волны есть расстояние между соседними импульсами, точь-в-точь как у монохроматической волны, падающей на дифракционную решетку! Таким образом, мы действительно увидим свет окрашенным. Но те же аргументы, казалось бы, позволяют думать, что «импульсы» любой формы создадут видимый свет.
Фиг. 34.6. Суммарное электрическое поле от совокупности острых импульсов (а) и импульсов гладкой формы (б).
Фиг. 34.7. Крабовидная туманность. Снято без фильтра .
Нет, это не так. Предположим, что пики гораздо более гладкие; давайте снова сложим все рассеянные волны, разделенные небольшими временными интервалами (фиг. 34.6,б). Тогда мы увидим, что поле почти не испытывает колебаний и представляет собой весьма гладкую кривую, потому что каждый импульс мало меняется за промежуток времени между приходом двух соседних рассеянных волн.
Электромагнитное излучение, испускаемое релятивистской заряженной частицей, которая вращается в магнитном поле, называется синхротронным излучением. Происхождение этого названия очевидно, хотя такое излучение возникает не только в синхротронах и даже не только в условиях Земли. Весьма интересно и увлекательно то, что оно возникает и во Вселенной!
§ 4. Космическое еинхротронное излучение
К 1054 г. нашей эры китайская и японская цивилизации были одними из самых передовых в мире: китайцы и японцы уже тогда следили за явлениями во Вселенной, и в этот самый год они зафиксировали замечательное событие — внезапное появление яркой звезды. (Любопытно, что ни один из европейских монахов, которые написали в средние века столько книг, и не подумал отметить это событие.) Как выглядит родившаяся звезда в настоящее время, показано на фиг. 34.7. Снаружи видно большое количество красных нитей, которые создаются атомами тонкой газовой оболочки, излучающими при своих
Фиг. 34.8. Крабовидная туманность.
Снято через синий фильтр и поляроид, а — электрический вектор направлен вертикально; б — электрический вектор направлен по горизонтали.
собственных частотах; спектр излучения состоит из ярких отдельных линий. Красный цвет обязан своим появлением азоту. А вот в центре светится странное размазанное пятно, излучающее в непрерывном спектре частот, т. е. частоты, свойственные разным атомам, никак не выделены. Пятно это — вовсе не облако пыли, отражающее свет от соседних звезд, что могло бы тоже привести к непрерывному спектру излучения. Сквозь это образование можно увидеть звезды, значит, оно прозрачное и само излучает свет.
Читать дальшеИнтервал:
Закладка: