Александр Филиппов - Многоликий солитон

Тут можно читать онлайн Александр Филиппов - Многоликий солитон - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, гл. ред. физ.-мат. лит., год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Многоликий солитон
  • Автор:
  • Жанр:
  • Издательство:
    Наука, гл. ред. физ.-мат. лит.
  • Год:
    1990
  • Город:
    Москва
  • ISBN:
    5-02-014405-3
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Александр Филиппов - Многоликий солитон краткое содержание

Многоликий солитон - описание и краткое содержание, автор Александр Филиппов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.

В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.

Для школьников старших классов, студентов, преподавателей.

Многоликий солитон - читать онлайн бесплатно полную версию (весь текст целиком)

Многоликий солитон - читать книгу онлайн бесплатно, автор Александр Филиппов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В самых лучших на сегодня световодах потери составляют примерно пять процентов на километр. Поэтому энергия солитона на расстоянии L км будет равна Е 0 е - 0,05 L , где Е 0— начальная энергия солитона (вспомните закон радиоактивного распада, только здесь роль времени играет расстояние). На расстоянии L = 20 км энергия уменьшится в е картинка 382 2,72 раз.

Обсуждались разные способы компенсации этих потерь. Самый простой состоит в том, что в световод примерно через каждые сорок километров впускается лазерная подсветка. Частота и мощность подсвечивающих лазеров подбираются так, чтобы молекулы световода могли отбирать часть энергии подсвечивающего луча, а затем быстро отдавать ее солитону. Это напоминает механизм самонаведенной прозрачности, но здесь молекулы возбуждаются внешним источником, а не самим солитоном, так что возможна подкачка энергии.

Этот механизм усиления солитонов тесно связан с эффектом комбинационного рассеяния света в веществе, открытым в 1928 г. индийскими физиками Ч. Раманом и К. Кришнаном и, независимо от них, Л. И. Мандельштамом и Г. С. Лансбергом. Его часто называют просто эффектом Рамана, что, конечно, исторически несправедливо. Суть эффекта состоит в том, что при рассеянии света его спектральный состав изменяется. Говоря словами Л. И. Мандельштама: «Мы здесь... имеем не что иное, как модуляцию падающей волны собственными колебаниями молекул... так же, как спектр обычного телефонного передатчика несет в себе весь ваш разговор..., так и спектр рассеянного света несет то, что молекула говорит о себе. Изучая его, вы изучаете свойства молекулы, вы изучаете ее строение».

Мы не можем входить в детали, но для понимания солитонного телеграфа это и не нужно. Достаточно понимать, что при посредничестве молекул световода солитон может получать энергию от подсвечивающего лазера, и все можно устроить так, что эта энергия полностью скомпенсирует потери. Это и позволяет солитонам проходить большие расстояния, сохраняя индивидуальность. Конечно, существуют и ограничения, связанные с тем, что случайные взаимодействия солитонов с молекулами световода несколько меняют его скорость. Поэтому на очень больших расстояниях (несколько тысяч километров) могут начаться сбои: скажем, один импульс догонит другой. Ограничения на скорость передачи информации солитонными импульсами вызваны тем, что сам импульс нельзя сделать слишком коротким и что между импульсами необходимо оставлять достаточно большой зазор. Можно рассчитывать на минимальную длительность импульса картинка 3831 пикосекунды (т. е. 10 -12с). Если отправлять импульсы не чаще, чем через картинка 38410 пикосекунд, то один бит информации передавался бы за 10 пикосекунд, т. е. скорость передачи информации картинка 38510 11бит/ч = 100 гигабит/с. Видимо, это максимум того, на что реально можно рассчитывать, но это очень неплохо, в сто раз лучше, чем в обычной волоконной связи. Кроме того, солитонная связь должна быть куда более надежной (не нужна регенерация!) и более дешевой.

В опытах, с которых был начат этот рассказ, было показано, что все теоретические ожидания и предсказания оказались правильными. Удалось передать солитоны на расстоянии больше 4000 км без существенного искажения их формы. Теперь практическая реализация проекта солитонного телеграфа не за горами. Вероятно, в середине следующего десятилетия он заработает! Это будет первый пример реального применения солитонов в технике, подобного телеграфу, телефону, радио. Возможно и применение этих солитонов в ЭВМ с оптическими элементами памяти и оптическими линиями связи.

Вся эта история интересна еще и тем, что она позволяет проследить весь путь от рождения идеи до ее технической реализации. После фундаментальной работы Захарова и Шабата (1971 г.) довольно быстро (1973 г.) возникла идея получить оптические солитоны в волокнах. Как раз в это время научились делать хорошие волокна, а лазеры уже давно стали привычным инструментом физиков. В этом же 1973 г. сформировалась идея об использовании комбинационного рассеяния для усиления импульсов в световодах В 1980 г. удалось наблюдать солитоны, а еще через три года сформировалась мысль соединить одно с другим — применить комбинационное рассеяние к «усилению» солитонов. После пяти лет расчетов и экспериментов были, наконец, выполнены опыты, доказавшие возможность технической реализации солитонной передачи информации. Теперь в дело включатся технологи, инженеры, бизнесмены. Схематически можно представить этот путь от чистой идеи до ее материального воплощения примерно так:

Если чегото в этой схеме не хватает реализация идеи сильно задерживается - фото 386

Если чего-то в этой схеме не хватает, реализация идеи сильно задерживается. Судьба оптического солитона очень счастливая. Он родился вовремя и лет 25 от роду начнет самостоятельную жизнь в обществе, принося пользу людям.

Нервный импульс — «элементарная частица» мысли

Основные идеи о том, как образуется и как распространяется импульс электрического напряжения по нервным волокнам, были высказаны уже в начале нашего века. Они, однако, не были достаточно подкреплены опытами на живых нервных волокнах. Одна из основных причин этого состояла в том, что диаметр волокон очень мал: у млекопитающих — не больше 20 мкм, у лягушки самые толстые волокна имеют толщину 50 мкм.

Настоящее изучение структуры нервных волокон и распространения по ним электрических импульсов началось только с 1936 г., когда были найдены гигантские нервные волокна у кальмаров и каракатиц. Диаметр волокон у этих необычных существ доходит до 1 мм, и это уникальное свойство их нервной системы сослужило большую службу науке.

Скорость распространения нервного импульса с увеличением толщины d центральной части волокна увеличивается. Однако это увеличение очень медленное, примерно пропорциональное картинка 387Чтобы выжить в тяжелых условиях, надо, чтобы сигнал опасности передавался по соответствующему нерву как можно быстрее. Простейший способ — увеличение толщины волокон. По-видимому, каракатицы в процессе эволюции выжили вследствие того, что как-то сумели в десятки раз увеличить толщину этого жизненно важного нерва. Однако эволюция «изобрела» еще и другой, более совершенный способ увеличения скорости нервного импульса, который и был «принят на вооружение» остальными животными. У высших животных, а также и у нас с вами многие нервные волокна заключены в изолирующую оболочку. Это дает тот же эффект, что и увеличение толщины. Скорость импульса в толстом нервном волокне каракатицы равна 25 м/с, а в волокнах млекопитающих, которые в 50 раз тоньше, она может достигать 100 м/с.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Филиппов читать все книги автора по порядку

Александр Филиппов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Многоликий солитон отзывы


Отзывы читателей о книге Многоликий солитон, автор: Александр Филиппов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x