LibKing » Книги » sci-phys » Александр Филиппов - Многоликий солитон

Александр Филиппов - Многоликий солитон

Тут можно читать онлайн Александр Филиппов - Многоликий солитон - бесплатно полную версию книги (целиком). Жанр: sci-phys, издательство Наука, гл. ред. физ.-мат. лит., год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Александр Филиппов - Многоликий солитон
  • Название:
    Многоликий солитон
  • Автор:
  • Жанр:
  • Издательство:
    Наука, гл. ред. физ.-мат. лит.
  • Год:
    1990
  • ISBN:
    5-02-014405-3
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Александр Филиппов - Многоликий солитон краткое содержание

Многоликий солитон - описание и краткое содержание, автор Александр Филиппов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.

В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.

Для школьников старших классов, студентов, преподавателей.

Многоликий солитон - читать онлайн бесплатно полную версию (весь текст целиком)

Многоликий солитон - читать книгу онлайн бесплатно, автор Александр Филиппов
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Какую совершенную нервную систему можно было бы сделать, используя эти солитоны в качестве элементарных частиц мысли! Размеры этих солитонов могут быть довольно невелики, меньше 0,1 мм, а время, необходимое для их образования, фантастически мало, не более 10 -10с. Нервная система, построенная из джозефсоновских переходов, была бы довольно компактной и действовала бы с чудовищной скоростью. Умерим, впрочем, энтузиазм. Для создания подобной «нервной системы», если это вообще возможно, нужно пройти долгий и трудный путь. А пока ученые пытаются заставить джозефсоновские солитоны работать в ЭВМ. Это тоже непростая задача, но можно надеяться, что о таких ЭВМ мы с вами скоро услышим.

Для работы в ЭВМ можно приспособить и другие солитоны. Например, вихри в сверхпроводниках второго рода можно использовать в качестве ячеек памяти. Подобное применение уже нашли некоторые магнитные солитоны. В гл. 6 мы познакомились с простейшими представителями этого семейства. Существуют и более сложные дву- и трехмерные магнитные солитоны, напоминающие вихри в жидкостях, только роль линии тока в них играют линии, по которым выстраиваются элементарные магнитики. Такие образования дают наглядную модель солитонов, связанных с элементарными частицами, на которые мы бросим лишь беглый взгляд.

Элементарные частицы и солитоны

Главная цель естественных наук — раскрыть единство

сил Природы.

Л. Больцман

Современная наука выявила это единство на очень глубоком уровне. По нашим сегодняшним представлениям наблюдаемое вещество Вселенной состоит из фотонов, лептонов (электроны, мюоны, нейтрино) и кварков. Помимо электромагнитных взаимодействий, переносчиками которых служат фотоны, существуют сильные взаимодействия, связывающие кварки в барионы (протоны, нейтроны и пр.) и в мезоны, а также слабые взаимодействия, ответственные, например, за радиоактивный распад нейтрона. Все эти взаимодействия описываются единой теорией, глубоко обобщающей теорию Максвелла. Вместо векторов обычных электрического и магнитного полей Е , В в ней действуют несколько подобных векторных полей E i и B i , волны которых по своей природе сильно нелинейны *). Эта нелинейность неизбежно приводит к тому, что солитоны должны играть существенную роль в устройстве Вселенной.

*) Первое такое обобщение теории Максвелла было сделано Ч. Янгом и Р. Миллсом в 1954 г. Все подобные теории называют поэтому теориями Янга — Миллса. Подчеркнем, что нелинейность столь же глубоко заложена в природе полей Янгa — Миллса, как и в природе волн на воде.

Наиболее привлекательной представляется идея, что элементарные частицы и есть солитоны или солитоноподобные объекты. Эта идея имеет богатую историю. Мы уже упоминали о вихревых атомах Кельвина. В начале нашего века предлагались более реалистические солитоноподобные модели для электрона. В 1912 г. немецкий физик Густав Ми (1868—1957) нашел замечательное обобщение теории Максвелла, в котором обычные электромагнитные волны нелинейны, а электрон появляется как солитоноподобная частица малого, но конечного размера, в которой запасена конечная электромагнитная энергия. В 1934 г. теорию Ми возродил и усовершенствовал Макс Борн (1882—1970), один из создателей квантовой теории. Теорией Борна активно интересовался Я. И. Френкель и многие другие исследователи. Теории Ми и Борна не потеряли привлекательности и в наши дни. Хотя мы и понимаем, что к реальному электрону они имеют мало отношения, их ценность в том, что они заставляют уйти с проторенных дорог и будят фантазию, которая нам так необходима при освоении «нелинейной физики».

В неменьшей степени эти слова относятся и к работам, которым посвятил почти тридцать последних лет своей жизни Эйнштейн, пытавшийся объединить теорию Максвелла и свою теорию тяготения (общую теорию относительности) и найти в такой объединенной теории естественное место для электрона. Современникам казалось, что, занимаясь этими проблемами, он безнадежно отстал от науки своего времени. Теперь-то мы видим, что Эйнштейн скорее забежал вперед...

Один из недостатков всех этих предварительных попыток «солитонизации» элементарных частиц состоял в том, что они не учитывали требований квантовой теории. Другой проистекал из скудости знаний об устройстве реального мира. Достаточно реалистические солитонные модели элементарных частиц (особенную известность получила теория В. Гейзенберга) начали появляться в 50-е годы. Однако и они не привели к серьезному успеху, хотя и дали богатую пищу воображению.

Если кто из вас думает быть мудрым в веке сем, тот
будь безумным, чтобы быть мудрым. Ибо мудрость
мира сего есть безумие пред Богом.
Апостол Павел

Парадоксальную и, на первый взгляд, «безумную» идею высказал английский физик-теоретик Тони Скирм (1922—1987). Он изучал нелинейные взаимодействия полей, описывающих мезоны. В отличие от упомянутых в начале обобщенных максвелловских (векторных) полей E i , B i , мезонные поля задаются обычными (невекторными) функциями φ i ( t, х ). Изучая нелинейные взаимодействия этих полей, Скирм обнаружил, что они могут образовывать солитоны, и высказал смелую гипотезу, что их надо отождествить с наблюдаемыми нами протонами и нейтронами. Эта гипотеза противоречила всем устоявшимся представлениям о протонах и нейтронах и должна была «отлежаться» почти двадцать лет до того, как о ней снова вспомнили. Сегодня, когда пишутся эти строки, усовершенствованная солитонная модель протона увлекает многих физиков-теоретиков.

Теория Скирма показалась безумной потому, что протон не может состоять из мезонов. Это противоречило бы сохранению момента импульса, а также сохранению барионного заряда, равного +1 для протона и нейтрона и 0 для мезонов. Однако солитон нельзя считать состоящим из мезонов, точно так же как дислокацию нельзя составить из упругих волн, бегущих по кристаллу. Кстати, барионный заряд истолковывается по Скирму как сохраняющийся солитонный заряд. К этой идее Скирм пришел, когда до предела упростил свою модель, сделав ее одномерной. В результате получилась модель Френкеля-Конторовой, которую он исследовал, ничего не зная о работах своих предшественников.

Из доклада Т. Скирма, прочитанного в конце 1984 г. на конференции, посвященной теории «скирмионов»:

«У меня было три мотива для разработки модели такого типа: объединение, проблема перенормировок и то, что я назвал бы «проблема фермионов». Первый достаточно очевиден. Объединение того или иного сорта всегда было целью теоретической физики. ...мне всегда казалось, что вместо двух типов фундаментальных частиц — бозонов и фермионов — хорошо было бы иметь только один. По некоторым причинам я не любил фермионы и думал, что было бы забавно посмотреть, не могу ли я получить все из теории самодействующего бозонного поля!»

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Александр Филиппов читать все книги автора по порядку

Александр Филиппов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Многоликий солитон отзывы


Отзывы читателей о книге Многоликий солитон, автор: Александр Филиппов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img