LibKing » Книги » sci-phys » Александр Филиппов - Многоликий солитон

Александр Филиппов - Многоликий солитон

Тут можно читать онлайн Александр Филиппов - Многоликий солитон - бесплатно полную версию книги (целиком). Жанр: sci-phys, издательство Наука, гл. ред. физ.-мат. лит., год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Александр Филиппов - Многоликий солитон
  • Название:
    Многоликий солитон
  • Автор:
  • Жанр:
  • Издательство:
    Наука, гл. ред. физ.-мат. лит.
  • Год:
    1990
  • ISBN:
    5-02-014405-3
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Александр Филиппов - Многоликий солитон краткое содержание

Многоликий солитон - описание и краткое содержание, автор Александр Филиппов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.

В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.

Для школьников старших классов, студентов, преподавателей.

Многоликий солитон - читать онлайн бесплатно полную версию (весь текст целиком)

Многоликий солитон - читать книгу онлайн бесплатно, автор Александр Филиппов
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

В 1934 г. Э. Ферми ввел в теорию еще одно взаимодействие, ответственное за радиоактивный распад нейтрона. Оно намного слабее электромагнитного и его радиус действия меньше 10 -15см. Первоначально это взаимодействие мыслилось как «контактное», с нулевым радиусом действия. Постепенно, однако, выяснилось, что при нулевом радиусе действия в теории неизбежно возникают внутренние противоречия и теоретики начали размышлять о возможных переносчиках слабого взаимодействия — «слабых» мезонах с большой массой, определяющей малый радиус действия слабых сил. Тем временем количество элементарных частиц, открытых на ускорителях, быстро возрастало. Увеличивалось и число разнообразных процессов с их участием. Однако во всех процессах просматривались важные закономерности.

Все процессы удавалось разделить на три группы: сильные, слабые и электромагнитные. Существенное различие между ними проявлялось не только в силе и радиусе взаимодействия, но и в том, что электромагнитные и слабые взаимодействия оказались «универсальными» в том смысле, что между различными процессами взаимодействий и взаимных превращений частиц удавалось находить простые соотношении (симметрии). Между сильными процессами также существовали некоторые соотношения симметрии, но они, как правило, были разрушены до такой степени, что об универсальности не было и речи. Возникла таким образом, гипотеза, что слабое взаимодействие устроено подобно электромагнитному, но только «слабые фотоны» — их назвали W -мезонами ( W — от англ. weak, т. е. слабый) — весьма массивны (чтобы объяснить короткодействие слабых сил) и электрически заряжены. Позднее для объяснения универсальности пришлось добавить и нейтральный «слабый фотон», но это многим не нравилось, так как для объяснения наблюдаемых данных можно было обойтись заряженными W -мезонами. Несмотря на некоторые теоретические трудности таких теорий слабого взаимодействия, они получили довольно широкое признание.

Сложнее обстояло дело с сильными взаимодействиями. Их также пытались устроить наподобие электромагнитных взаимодействий, но с «сильными фотонами» (массивными и заряженными), однако это не привело к успеху до тех пор, пока М. Гелл-Манн и Г. Цвейг не изобрели кварки. Слово «изобрели» по отношению к кваркам вполне уместно, так как они не наблюдались на опыте, и существуют весьма серьезные основания думать, что они вообще ненаблюдаемы, никогда не появляются в свободном состоянии. Сначала думали, что кварки просто настолько массивны, что их нельзя получить на современных ускорителях. Позднее, однако, была предложена теория сильного взаимодействия, весьма похожая на электродинамику, но более сложная, в которой силы, связывающие кварки, при их удалении друг от друга настолько быстро нарастают, что кварки никогда не могут разлететься. В этой теории кварки и мезоны переносящие взаимодействие (их называют глюонами, от английского слова glue, т. е. клей), обладают неким новым зарядом, который назвали «цветом» (в связи с тем, что этот заряд может принимать три различных значения). Глюоны, подобно фотонам, не имеют массы, но сильно взаимодействуют между собой. По этой причине описывающие их уравнения нелинейны, это — уже упоминавшиеся уравнения Янга—Миллса. Теория кварков и глюонов называется квантовой хромодинамикой (КХД). Строго говоря, невозможность наблюдения кварков и глюонов пока не доказана, но весьма правдоподобна, мы обсудим это чуть позже.

Из-за того что «слабые» мезоны массивны, слабое взаимодействие казалось не очень похожим на электромагнитное. Тем не менее С. Вайнбергу, Ш. Глэшоу и А. Саламу удалось объединить его с электромагнитным с помощью все той же теории Янга—Миллса. Теория объединенного электромагнитно-слабого взаимодействия блестяще подтвердилась — в экспериментах на ускорителях были открыты заряженные и нейтральные «слабые фотоны». Заряженные называют W -бозонами, а нейтральные — это Z -бозон и фотон (термин «бозон» напоминает, что эти частицы не состоят из кварков, мезонами обычно теперь называют связанные состояния кварков и антикварков). В этой теории естественно объясняется интенсивность, радиус действия и другие свойства слабого взаимодействия. При этом на малых расстояниях, меньших комптоновской длины волны W - и Z -бозонов, картинка 41010 -16см, слабое и электромагнитное взаимодействия неразличимы, а на больших расстояниях «выживает» лишь электродинамика Максвелла—Лоренца.

Естественно возникла мысль, что на еще меньших расстояниях возможно объединение всех трех взаимодействий. Оказалось, однако, что эти расстояния не просто малы, а фантастически малы, меньше картинка 41110 -28см. Проникнуть на столь малые расстояния с помощью ускорителей невозможно. Доступны проверке лишь некоторые следствия таких теорий, например упоминавшееся выше предсказание распада протона и объяснение происхождения электромагнитно-слабого взаимодействия. В этих теориях, называемых теориями Великого объединения (ТВО), предсказываются также весьма необычные гигантские солитоны — космические струны, представляющие собой тонкие вихревые трубки, длина которых сравнима с размером галактики. Эти трубки похожи на абрикосовские вихри, но внутри них сосредоточены другие поля.

Некоторые предсказания ТВО оправдались; ясно, что теоретическая мысль движется в правильном направлении. Однако в ТВО есть много внутренних проблем, а главное, совершенно в стороне осталось гравитационное взаимодействие, без которого система мира не может быть полной. Во всех описанных теориях, объединенных в ТВО, вещество существует в виде фермионов (кварки, лептоны), а взаимодействие переносится бозонами Янга—Миллса (глюоны, W - и Z -бозоны). Теория же гравитации устроена совершенно по-другому, так как переносчики гравитационного взаимодействия не похожи на бозоны Янга—Миллса (понять это можно, вспомнив, что не существует гравитационного заряда, а значит, и столь любимой фантастами антигравитации). На первый взгляд, никакой возможности включить в единую схему гравитацию не видно. Однако теоретики ХХ в. не менее изобретательны, чем их великие предшественники. Возможный выход из, по-видимому, без выходной ситуации нашелся.

Еще в начале этого столетия знакомый нам Дж. Дж. Томсон пытался построить довольно необычную модель взаимодействия электронов. По его мысли, между движущимися элементарными зарядами вытягивается нить, внутри которой сосредоточено электрическое и магнитное поле. Вне этой нити электромагнитное поле равно нулю. Нить может колебаться и вытягиваться, энергия передается колебаниями нити. Он и его последователи безуспешно пытались найти соответствующие решения уравнений Максвелла. Сегодня ясно, почему это не удалось. В сущности, была сделана попытка получить абрикосовский вихрь в вакууме. Но для образования такого вихря «вакуум» должен обладать весьма сложными свойствами, он должен быть похож на сверхпроводник второго рода для электрических и магнитных зарядов.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Александр Филиппов читать все книги автора по порядку

Александр Филиппов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Многоликий солитон отзывы


Отзывы читателей о книге Многоликий солитон, автор: Александр Филиппов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img