LibKing » Книги » sci-phys » Александр Филиппов - Многоликий солитон

Александр Филиппов - Многоликий солитон

Тут можно читать онлайн Александр Филиппов - Многоликий солитон - бесплатно полную версию книги (целиком). Жанр: sci-phys, издательство Наука, гл. ред. физ.-мат. лит., год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Александр Филиппов - Многоликий солитон
  • Название:
    Многоликий солитон
  • Автор:
  • Жанр:
  • Издательство:
    Наука, гл. ред. физ.-мат. лит.
  • Год:
    1990
  • ISBN:
    5-02-014405-3
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Александр Филиппов - Многоликий солитон краткое содержание

Многоликий солитон - описание и краткое содержание, автор Александр Филиппов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.

В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.

Для школьников старших классов, студентов, преподавателей.

Многоликий солитон - читать онлайн бесплатно полную версию (весь текст целиком)

Многоликий солитон - читать книгу онлайн бесплатно, автор Александр Филиппов
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

«Две другие «проблемы», конечно, более современны и возникли в контексте квантовой теории поля; однако, обдумывая их, я обратил внимание на то, что они уже встречались в истории физики раньше, хотя и в совершенно другом обличье. В особенности интересно было познакомиться со взглядами сэра Уильяма Томсона (впоследствии лорда Кельвина)». «Кельвину была чрезвычайно антипатична идея бесконечно твердых точечно-подобных атомов».

Далее Скирм излагает идеи Кельвина о вихревых атомах. Хотя эти идеи и не оказали прямого влияния на разработку им теории скирмионов, преемственность мотивации и идеологии кажется достаточно очевидной.

Судьба протона, а вместе с ней судьба всей нашей Вселенной, возможно, зависят от еще одного замечательного солитона, предсказываемого единой теорией взаимодействий, с которой мы начали этот заключительный рассказ. Помимо других удивительных свойств, этот солитон несет на себе магнитный заряд, и его называют магнитным монополем . Хорошо известно, что теория Фарадея-Максвелла не допускает существования изолированного магнитного заряда, существуют лишь магнитные диполи. С течением времени это убеждение приобрело силу предрассудка, пробить брешь в котором удалось лишь в 1931 г. Это сделал знаменитый английский физик Поль Дирак (1902—1984), тот самый, который предсказал антиэлектроны (позитроны) и многое другое. Говоря словами его работы, «...квантовая механика в действительности не противоречит существованию магнитных полюсов. Напротив... естественным образом... неизбежно приводит к волновым уравнениям, которые имеют единственную физическую интерпретацию — движение электрона в поле изолированного магнитного полюса... С этой точки зрения было бы удивительно, если бы Природа не использовала этой возможности»! Самое интересное следствие рассуждений Дирака состояло в том, что магнитный заряд g монополя не может быть произвольным, а должен быть равен целому кратному величины hc /4π e , где е — заряд электрона. Вспомнив определение кванта магнитного потока (который появился лишь двадцать лет спустя!), нетрудно заметить, что элементарный магнитный заряд равен Ф 0/2π. Из рассуждений Дирака следовало также, что электрические заряды должны квантоваться, т. е. быть кратными элементарному электрическому заряду!

Очень немногие физики того времени сумели оценить эту удивительную работу. Трудность была не только в том, что магнитных зарядов никто не видел, но и в том, что поле магнитного заряда было устроено не совсем так, как поле электрического заряда. Полной симметрии между электричеством и магнетизмом не получалось. Так или иначе, в течение почти сорока лет монополь Дирака привлекал очень мало внимания физиков, повторяя судьбу солитона Рассела. Перелом произошел, когда в 1974 г. советский физик А. М. Поляков и голландский физик Г. т'Хоофт независимо показали, что в некоторых теориях Янгa — Миллса существуют солитоны с магнитным зарядом. В отличие от точечного монополя Дирака, монополь Полякова—т'Хоофта имеет конечные размеры и непростое топологическое устройство. В этом смысле его можно назвать многомерным и весьма рафинированным потомком простенького солитона Френкеля. Пока ни одного монополя никому увидеть не удалось, однако сложное устройство магнитных монополей и серьезное влияние, которое их существование может оказать на судьбу всей Вселенной, привлекают к ним общее внимание.

Не так давно молодой советский физик В. А. Рубаков показал, что протон, приблизившийся к монополю, быстро распадается. Современные единые теории взаимодействий допускают, вообще говоря, распад протона, требующий несохранения барионного заряда, но ставят очень высокую границу для среднего времени жизни — больше 10 30лет. (За 1000 лет Земля могла бы потерять благодаря таким распадам примерно 6 г своей массы.) Тем не менее вблизи монополя протон распался бы практически мгновенно. Наше счастье, что сейчас монополей во Вселенной мало, а может быть, и вовсе нет!

Единые теории и струны

Тому, кто утверждает множественность (сущего), при-

ходится впадать в противоречия.

Зенон из Элеи (V в. до н. э.)

Последние четыре года были временем развития необычайно смелых идей в теории элементарных частиц. Казалось, вот-вот будет создана теория, объясняющая, из чего и как построен наш мир. Эти надежды пока не оправдались, но выполненная физиками-теоретиками работа открыла совершенно новые перспективы, и возможно, что на пороге нового тысячелетия какая-то черновая, предварительная теория будет создана. Весьма вероятно, что в этой теории важную роль будут играть солитоны.

Чтобы хотя бы кратко объяснить новые идеи теоретиков, попытаемся в очень сжатом (и заведомо неполном и неточном) виде описать, что сегодня известно о частицах и их взаимодействиях. Для Ньютона мир состоял из частиц, между которыми действовали силы тяготения. Этот мир был очень простым и упорядоченным, до совершенства его довел Лаплас в своей «Системе мира». Мир Максвелла намного сложнее. Во-первых, в систему мира вторгся хаос (вспомним максвелловское распределение скоростей молекул в газе). Но главное все же в том, что появилось электромагнитное поле. Колоссальное достижение Максвелла, объединившего в одной стройной системе электрические и магнитные взаимодействия, привело его к большим затруднениям при попытке понять природу электрических зарядов. Уравнения оказались совершенно симметричными относительно электрического и магнитного полей, но несимметричными относительно источников этих полей. Можно было бы попытаться ввести магнитные заряды, но Максвелл, подобно Ньютону, не был склонен к «измышлению гипотез», которые нельзя проверить на опыте. Кроме того, ему не нравилась идея о точечных зарядах.

Вернул частицы в теорию Г. А. Лоренц в своей «Теории электронов». Лоренцеву варианту теории электромагнитных явлений была суждена долгая жизнь. Теория электронов привела к созданию теории относительности. Ее применение к атомам породило квантовую механику, а впоследствии и квантовую электродинамику (в которой квантованию подвергались не только уровни энергии атомов, но и само электромагнитное поле). Даже квантование электронного поля (электроны и позитроны — кванты этого поля) не потребовало принципиальных изменений в картине мира Максвелла—Лоренца. Атомы состоят из ядер и электронов, связанных электромагнитными взаимодействиями. Силы, связывающие атомы в молекулы, также удалось объяснить в рамках квантовой механики.

Правда, атомные ядра оказались более сложными объектами, чем точечные, бесструктурные (элементарные) электроны, но постепенно выяснилось, что они состоят из протонов и нейтронов, которые также можно считать элементарными. Эта простая и стройная картина осложнялась тем обстоятельством, что электромагнитные силы не могли связать нейтроны и протоны в ядрах. Все попытки найти объяснение ядерных сил, «не измышляя» гипотез, неизменно терпели неудачу, и в 1935 г. молодой японский физик Хидеки Юкава сделал смелый шаг — он предположил, что существует переносчик ядерного взаимодействия, который он называл мезоном. Мезон был открыт на опыте лишь в 1947 г., но стройная концепция Юкавы, объяснявшая важнейшие факты физики атомного ядра, быстро завоевала признание. Появилось новое, ядерное взаимодействие, в сто-тысячу раз более сильное, чем электромагнитное и действующее на очень малых расстояниях, порядка 10 -13см. (Радиус действия сил, переносимых частицей с массой m , равен комптоновской длине волны картинка 409/ , масса мезона Юкавы, обычно называемого π-мезоном, равна 2,5·10 -25г.)

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Александр Филиппов читать все книги автора по порядку

Александр Филиппов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Многоликий солитон отзывы


Отзывы читателей о книге Многоликий солитон, автор: Александр Филиппов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img