Вольдемар Смилга - Очевидное? Нет, еще неизведанное…

Тут можно читать онлайн Вольдемар Смилга - Очевидное? Нет, еще неизведанное… - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Молодая гвардия, год 1966. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Очевидное? Нет, еще неизведанное…
  • Автор:
  • Жанр:
  • Издательство:
    Молодая гвардия
  • Год:
    1966
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.13/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Вольдемар Смилга - Очевидное? Нет, еще неизведанное… краткое содержание

Очевидное? Нет, еще неизведанное… - описание и краткое содержание, автор Вольдемар Смилга, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эффектное название, возможно, и интригует, но, уж конечно, ничего не объясняет. А в этой книге довольно серьезно рассказывается о том, чего достигла физика со времен Галилея до Эйнштейна, о явлениях древних, как мир, и, по-видимому, всем знакомых, а в конечном счете — о специальной теории относительности.

Очевидное? Нет, еще неизведанное… - читать онлайн бесплатно полную версию (весь текст целиком)

Очевидное? Нет, еще неизведанное… - читать книгу онлайн бесплатно, автор Вольдемар Смилга
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Далее в процессе определения длины незримо присутствует понятие движение - фото 12

Далее, в процессе определения длины незримо присутствует понятие «движение». Если обратиться к геометрии, то мы будем приятно поражены, узнав, что математики считают движение понятием первичным и никак его не определяют. Физиков же это не очень устраивает.

И наконец, последнее. Математикам хорошо. Они оперируют с идеальными геометрическими отрезками. Их масштабный отрезок M не расширится при нагревании, не сократится под давлением — он обладает только геометрическими, а не физическими свойствами.

Если же мы хотим иметь строгое определение длины, пригодное для физиков, необходимо учитывать реальные свойства масштабного отрезка, а значит, сформулировать какие-то добавочные постулаты, описывающие эти свойства.

После только что сказанного может сложиться впечатление, что попытка четко определить длину и процесс ее измерения в достаточной степени безнадежна.

Впрочем, в науке, как и в жизни, можно примириться с любыми тяготами избранного пути, если знать, к чему мы стремимся, видеть перспективу. А пока вообще не очевидно, следует ли физикам заниматься такими вопросами, как скрупулезный анализ понятий длины времени и т. п. Или же решение подобных проблем, говоря грубо, досужая, никому не нужная болтовня?

«Может быть, оставим, господа, все эти вопросы математикам? Им и карты в руки. Пусть они дают строгие определения. А мы и без определений знаем, что такое длина. Это, изволите видеть, понятно каждому. И длину движущегося поезда без всяких рецептов и прикладывания масштабов прекрасно измерим. Отметим, знаете ли, просто точку на полотне и одновременно точку, против которой начало паровоза имелось. И все. Потом можете прикладывать к поезду ваш масштаб — сойдется. И вообще, господа, сводить все к прикладыванию масштаба, извините, глупость! Извольте вашим способом измерить расстояние между вершинами двух гор. Не выйдет-с! Без триангуляции не обойдетесь. А в триангуляции, изволите видеть, измерение углов присутствует, в определение ваше не входящее.

Некие сомнения. Попутно автор проявляет юмор.

Жили мы, милостивые государи, без этих определений, слава те господи, почитай с Ньютона, и ничего, неплохо жили-с. Измеряем и расстояние до звезд и длину микроорганизмов. И все без прикладывания.

Конечно, не отрицаю, нечто разумное в определении сем присутствует. К примеру-с, масштабный отрезок. Эталон длины иметь нужно, согласны? Но об эталоне длины, позвольте сказать, мы не менее вашего наслышаны. Без малого сто лет за семью замками храним. В подвалах-с.

А в целом все это не то. Натуру изучайте. Феномены-с. А основ механики не касайтесь. Здесь не вам чета люди трудились. Ньютон-с, к вашему сведению!»

Можно представить, что примерно такую отповедь пришлось бы нам выслушать от какого-либо ординарного профессора физики середины XIX века.

И с горечью приходится признать, что пока нечего возразить. Опыт, весь опыт классической физики свидетельствует против нас. Действительно, ведь обходились раньше без определений.

Тем не менее в данном случае физики основательно просчитались. Лишь Эйнштейн показал, что до теории относительности они, по существу, не знали, с какими представлениями о природе мира, о природе времени и пространства связана их наука.

Сейчас всем ясно, что такие понятия, как время или длина, нуждаются в совершенно четком определении, что в физике нет и не может быть места для самоочевидных утверждений.

Однако необходим был Эйнштейн, чтобы эти замечания, столь убедительные, когда их высказывают в общей форме, на деле стали достоянием ученых.

Физик XIX столетия не интересовался основами основ своей науки в первую очередь потому, что был убежден в невозможности появления каких-либо принципиально новых теорий.

Можно повторить, что в аналогичном случае математики оказались принципиальнее. Примерно два тысячелетия геометры мучились над доказательством пятого постулата Эвклида (постулата параллельности), руководствуясь при этом, пожалуй, только чисто эстетическими соображениями. Постулат о параллельных прямых выделялся среди остальных аксиом геометрии своей сравнительной неочевидностью и обособленностью. Именно это очень не нравилось математикам. Никакой другой причины для объяснения настойчивых попыток доказать пятый постулат не видно.

И авторы неэвклидовой геометрии (Лобачевский, Бояи, Гаусс) пришли к своим представлениям не потому, что геометрия Эвклида не соблюдалась на практике, а на основе чисто умозрительных построений.

Но если математики могли чисто логически прийти к идее, что возможны различные системы аксиом, что пространство может описываться различными геометриями, то физикам такой путь не был доступен. Во-первых, основы физики (ее аксиомы) тогда, по существу, не были разработаны. А во-вторых, сам характер исследовательской работы воспитывал предубеждение против скрупулезных логических, излишне абстрактных рассуждений. И только гений Эйнштейна помог физикам синтезировать оба метода.

Поэтому, зная, что детальный анализ основных положений классической физики необходим для понимания теории относительности, мы можем спокойно продолжать.

Посмотрим, как еще следует дополнить математическое определение длины. Мы оперировали с масштабными отрезками и с реальными физическими свойствами. Но эти свойства изменяются в зависимости от температуры, давления и прочих условий. И может оказаться, что эти свойства всегда изменяются даже в результате движения. Ну, скажем, так. У вас есть два стальных стержня — один в Москве, другой в Ленинграде. Если вы привезете ленинградский стержень в Москву и сравните с московским, они окажутся равны (то есть совпадут). А если заставить ленинградский стержень проделать более длинный путь, он может оказаться короче. Это предположение звучит дико, но оно не исключено.

Очень непривычные и потому очень трудные рассуждения.

А возможно, решает не расстояние, а время, которое стержень находится в пути. То есть чем дольше он будет в движении, тем короче (или длиннее) станет.

Тоже звучит дико. Не правда ли? Но если подумать, то придется признать, что эти предположения кажутся нам нелепыми единственно потому, что мы бессознательно, интуитивно привлекаем наш опыт. А опыт говорит, что ничего подобного не происходит.

Еще раз подчеркнем. Подобные вопросы нельзя отбрасывать на основании общих рассуждений, их можно разрешать только путем анализа опытных данных.

А всю совокупность фактов, накопленных физикой, можно выразить таким постулатом.

Постулат № 1.Всегда можно провести движение реального физического стержня относительно масштабного отрезка по любому, наперед заданному пути таким образом, что по окончании движения его длина останется такой же, как и до начала движения, при этом, конечно, предполагается, что прочие физические условия (например, температура) оставались неизменными в процессах движения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вольдемар Смилга читать все книги автора по порядку

Вольдемар Смилга - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Очевидное? Нет, еще неизведанное… отзывы


Отзывы читателей о книге Очевидное? Нет, еще неизведанное…, автор: Вольдемар Смилга. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x