Вольдемар Смилга - Очевидное? Нет, еще неизведанное…
- Название:Очевидное? Нет, еще неизведанное…
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1966
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вольдемар Смилга - Очевидное? Нет, еще неизведанное… краткое содержание
Эффектное название, возможно, и интригует, но, уж конечно, ничего не объясняет. А в этой книге довольно серьезно рассказывается о том, чего достигла физика со времен Галилея до Эйнштейна, о явлениях древних, как мир, и, по-видимому, всем знакомых, а в конечном счете — о специальной теории относительности.
Очевидное? Нет, еще неизведанное… - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
И еще одно и весьма важное замечание. Мы поверили, что, сравнивая ход своих часов с ускоренно двигающимися часами, наблюдатель в инерциальной системе отсчета с хорошей точностью может использовать формулу, приведенную чуть выше, или, иными словами, воспользоваться специальной теорией относительности.
Поверим теперь, что, решая аналогичную задачу, наблюдатель, связанный с ускоренно движущимися часами (наблюдатель в неинерциальной системе отсчета), вообще не имеет права использовать формулы специальной теории. Поверим, что это незаконно.
А теперь сообщим, в чем состоит так называемый «парадокс часов».
Парадокс заключается в следующем. Развезем с относительной скоростью, близкой к скорости света, в разные точки пространства двое часов, а затем свезем их вместе.
С точки зрения наблюдателя А двигались часы В , их ритм замедлился, и при встрече В будут отставать.
Но наблюдатель В волен рассуждать точно так же. Он скажет, что двигались часы А и отставать должны они.

После путешествия часы А и В оказываются в одной точке. Разность их показаний — величина абсолютная, и потому прав может быть лишь один из двух.
После нашего вступления ответ очевиден. Тот из наблюдателей, чьи часы испытывали действие ускорений (пусть это был наблюдатель В ), « не имеет права » использовать специальную теорию относительности. Если он не знает общей теории, то вообще не может ничего сказать о ритме часов А . Но зато наблюдатель А вправе как приближение использовать специальную теорию (если ускорения часов В не слишком велики). Он заключит (и будет прав), что отстанут часы В , причем как именно — можно вычислить.
Если ускорения В «велики», то, используя только специальную теорию, вообще ничего определенного нельзя сказать. Но если прибегнуть к общей теории относительности, можно показать, что В должны отставать от А .
И наконец, если ускорялись и В и A , весь вопрос следует адресовать к общей теории, так как в этом случае могут осуществляться самые разные варианты.
Так что ответ на кажущийся парадокс скрыт в неравноправии двух часов: А и B . Если они разъехались, а затем встретились, то хотя бы одни часы испытали действие ускорений [80] .
Глава XV,

Законы механики Эйнштейна поражают своей необычностью человека, воспитанного на классических представлениях, хотя между релятивистской механикой и механикой Ньютона значительно больше общего, чем может показаться на первый взгляд.
Начнем с того, что первый закон Ньютона остается неизменным и в релятивистской механике — в инерциальной системе отсчета тело, свободное от действия внешних сил, сохраняет неизменным свой импульс.
И опять рассуждения.Третий закон механики Ньютона — равенство действия и противодействия — также остается в механике теории относительности. Снова можно утверждать, что «если два тела взаимодействуют между собой, то их суммарный импульс остается неизменным».
Собственно говоря, остается неизменным и второй закон механики. По-прежнему сила равна скорости изменения импульса:

Но если содержание второго закона прежнее, конкретная его форма существенно меняется. Нам придется принять на веру, что в релятивистской механике импульс тела определяется выражением:

Выводить эту формулу мы не в состоянии и потому отметим только, что определение импульса выглядит довольно естественно и правдоподобно.
Во-первых, при скоростях, много меньших скорости света, мы получаем (как и должно быть) знакомое классическое выражение для импульса P = mv .
С другой стороны, по мере приближения скорости тела к скорости света импульс стремится к бесконечности, что тоже понятно, так как полностью соответствует тому обстоятельству, что никакое материальное тело нельзя разогнать до скорости, равной скорости света.

На графике очень хорошо видно, как связан истинный импульс тела с приближенным классическим выражением.
Сплошная линия — это релятивистское выражение для импульса, а пунктирная — классическое. Даже при очень больших, с «житейской точки зрения», скоростях релятивистская формула почти совпадает с классической.
При скорости в 30 километров в секунду [81] , используя классическое выражение, мы занижаем импульс на одну вторую миллионной доли процента.
Поэтому ясно, что даже при расчете движения космических ракет никому не приходит в голову учитывать релятивистские эффекты. Очевидно, еще более нелепо использовать строгие формулы теории относительности при рассмотрении тех значительно более медленных движений, с которыми мы имеем дело в повседневной технике. В этих случаях великолепно оправдывается первое приближение — механика Ньютона.
Но в нашем веке инженерам пришлось встретиться с большим числом чисто технических задач, для решения которых необходима механика Эйнштейна. Элементарные частицы — электроны, протоны — разгоняются в современных ускорителях до скоростей, предельно близких к скорости света.
Если электрон ускорять при помощи сравнительно скромной разности потенциалов в 1 миллион вольт, он приобретет скорость 0,92 с . При такой скорости импульс, вычисленный по классической формуле, уже в 3 раза ниже истинного значения. Излишне пояснять, что при расчетах ускорителей элементарных частиц используют строгие формулы релятивистской механики. Так что в наше время теория Эйнштейна используется и в инженерной физике. Вероятно, так же излишне упоминать, что практика прекрасно согласуется с формулами Эйнштейна.
Вернемся ко второму закону Ньютона в релятивистской механике. Если считать, что импульс тела должен определяться как произведение массы тела на скорость, то оказывается, что масса зависит от скорости.
А именно:

где m — масса покоящегося тела, «масса покоя».
Читать дальшеИнтервал:
Закладка: