Вольдемар Смилга - Очевидное? Нет, еще неизведанное…
- Название:Очевидное? Нет, еще неизведанное…
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1966
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вольдемар Смилга - Очевидное? Нет, еще неизведанное… краткое содержание
Эффектное название, возможно, и интригует, но, уж конечно, ничего не объясняет. А в этой книге довольно серьезно рассказывается о том, чего достигла физика со времен Галилея до Эйнштейна, о явлениях древних, как мир, и, по-видимому, всем знакомых, а в конечном счете — о специальной теории относительности.
Очевидное? Нет, еще неизведанное… - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
По этому поводу можно высказать совершенно общее утверждение. Заранее ясно, что в теории Эйнштейна как предельный случай должна заключаться классическая механика. Механика Ньютона многократно оправдывалась при проверке на опыте, и никакая разумная новая теория не может просто ее отбросить. От подобных неприятностей классическую механику метод принципов Ньютона страхует навечно.
Предельный переход к механике Ньютона. Важное замечание общего характера иллюстрируется конкретным примером.Как бы ни изменились принципиальные положения, что бы ни оказалось в дальнейшем, но когда скорости тел малы, любая теория должна давать те же или, точнее, почти те же результаты, что и механика Ньютона. Как приближение к истине законы Ньютона останутся навсегда.

Все, что сказано сейчас о механике Ньютона, можно дословно повторить по отношению к специальной теории относительности. Дальнейшее развитие науки может внести любые изменения. Может произойти все что угодно, но хотя бы как приближение к истине теория Эйнштейна останется в науке навсегда.
Вернемся, однако, к конкретному вопросу. Как можно увидеть, что теория Эйнштейна включает в себя механику Ньютона? В этом легко, например, убедиться при анализе любого вывода теории. Ограничимся только одним примером. Когда v / c << 1 можно пренебречь членами ( v / c ) 2и ( v 2/c 2) и формулы преобразования Лоренца переходят в хорошо известные классические формулы преобразования Галилея:
x = x 1 + vt 1;
y = y 1;
z = z 1; t = t 1.
С другой стороны, преобразование Лоренца переходит в преобразование Галилея, если устремить с к бесконечности. Здесь физическое содержание тоже очень прозрачно. Бесконечная скорость распространения сигналов — это гипотеза, как помните, лежит в основе классической физики.
А теперь разрешите совсем маленькую сенсацию.
По существу, наша работа уже почти закончена. Вся специальная теория относительности непосредственно вытекает из двух постулатов, которые мы разобрали в предыдущих главах.
Самое основное изменение, которое вносится в классическую физику, — это изменение понятия времени, или, что то же, изменение понятия одновременности. Сей вопрос также рассмотрен. Мы не касались только одного вывода совершенно принципиального характера — связи между массой и энергией. Но это потом.
Так как математическая часть теории основана целиком на преобразовании Лоренца, которое нами рассмотрено, то все остальное, в том числе сокращение длины и изменение времени, не более чем простые следствия.
Один из наиболее неожиданных выводов релятивистской теории для человека, воспитанного на механике Ньютона, — закон сложения скоростей.Итак, перейдем к рассмотрению частностей с приятным сознанием, что основы уже ясны. Во-первых — закон сложения скоростей.
Постановка вопроса очевидна.
Пусть в инерциальной системе К со скоростью v 1движется некое тело. Пусть далее другое тело движется относительно первого со скоростью v 2. Требуется определить скорость второго тела относительно системы K .
Доставив себе удовольствие строгой и общей формулировкой проблемы, вернемся к железной дороге.
Поезд идет по полотну дороги со скоростью v 1 относительно полотна . (Конечно, его скорость может быть близка к скорости света.) Некто в поезде по не интересующей нас причине стреляет из ружья, и скорость пули — относительно поезда — v 2. Требуется определить скорость пули относительно полотна дороги. (Конечно, и скорость пули v 2тоже может быть близка к скорости света.) Мы ограничимся только тем частным случаем, когда скорости v 1и v 2направлены по одной прямой, но все характерные черты теории относительности великолепно видны и в этом случае.
В классической механике суммарная скорость определялась предельно простым выражением v сум = v 1 ± v 2(знак + в том случае, когда стреляют по ходу поезда, и знак –, когда против хода).
По Эйнштейну, закон для определения суммарной скорости другой:

Как видно, если v 1 << c и v 2 << c , формула Эйнштейна переходит в классическую. (В этом случае можно спокойно пренебречь вторым членом знаменателя по сравнению с единицей.) Если же скорости v 1и v 2сравнимы со скоростью света, тогда формула Эйнштейна становится совершенно отличной от классической.
Лучше всего в этом можно убедиться, положив одну из скоростей (например, v 2) равной скорости света. Если помните, мы уже упоминали об этой задаче, обсуждая в XI главе, какова будет относительно полотна дороги скорость светового луча, посланного источником, находящимся на поезде. Легко видеть, что независимо от v 1абсолютная величина суммарной скорости снова равна скорости света.

Теперь можно разбить наши рассуждения в XI главе. Как помните, там, защищая баллистическую гипотезу, мы принимали как самоочевидный факт классическую формулу сложения скоростей.
Сейчас стоит прочесть еще раз страницу 246.И вот, как оказывается, именно это и неправильно.
Фронт световой волны, идущей из прожектора поезда, распространяется со скоростью с относительно поезда. Но относительно наблюдателя на земле он распространяется не со скоростью ( v поезда + c ), а снова с той же скоростью c .
Для нашего воображения, воспитанного на классической механике, это удивительно. Удивительно, но тем не менее правильно.
Более того, относительная скорость двух фотонов, несущихся навстречу друг другу со скоростью света, снова равна c , а не 2 c , как в классической физике [70] .
В механике Эйнштейна скорость света в вакууме представляет барьер, через который невозможно перебраться.
Глава XIV,

Как измерять длину движущихся тел, мы уже договорились в III главе. Напомним: «Длина движущегося тела есть расстояние между одновременно отмеченными положениями его начальной и конечной точек».
В классической физике длина движущегося тела, определенная таким образом, совпадала с длиной неподвижного тела, и все было хорошо. Еще и еще раз напомним:
Читать дальшеИнтервал:
Закладка: