Петр Путенихин - Правила счета элементов бесконечного множества
- Название:Правила счета элементов бесконечного множества
- Автор:
- Жанр:
- Издательство:Array SelfPub.ru
- Год:2021
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Петр Путенихин - Правила счета элементов бесконечного множества краткое содержание
Правила счета элементов бесконечного множества - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Как видим, ряд знаков имеет бесконечное счетное количество знаков и, резонно предположим, что так же считает и автор доказательства. Сразу же заметим, что утверждения следует признать абсурдными. Любое конечное число всегда меньше бесконечности.
"Предположим, что нам удалось каким-то образом перенумеровать все действительные числа. Чтобы доказать, что это предположение неверно, достаточно построить хоть одно незанумерованное число. … поступим следующим образом. Сначала напишем нуль и поставим после него запятую. Потом возьмем число, получившее первый номер, и посмотрим на его первый десятичный знак после запятой (то есть на число десятых)" [там же].
Для определенности отметим, что поиск незанумерованного числа производится, как можно заметить, на отдельном интервале всех действительных чисел [0, 1]. Сначала как на неточность в этом рассуждении, как и в предыдущем доказательстве, сразу же укажем на очевидное, но, похоже, незамеченное обстоятельство: на самом деле при последовательном, возрастающем счёте у второго числа вторая цифра тоже будет 0. И у третьего. И у четвертого. И у числа, занимающего бесконечно большую позицию. На словах это, возможно, не совсем ясно, поэтому покажем это на "виновнике торжества" – на оцифрованном отрезке:

Рис.1. Оцифрованный отрезок, отдельный интервал всех действительных чисел
На рисунке видно, что первая цифра после нуля будет отличной от нуля, единица будет только после точки 0,1 отрезка. На интервале от 0 до 0,1 содержится счетное (пока оспариваемое) количество точек. Во всяком случае, это не одна, не миллион и даже не гугл точек, равный 10 100, а в бесконечное число раз больше. У всех этих чисел первой цифрой после запятой будет ноль. Следовательно, искомое число пока находится вблизи нулевой точки, в самом начале отрезка [0, 1].
"Если эта цифра отлична от 1, то в числе, которое мы пишем, поставим после запятой 1, а если эта цифра равна 1, то поставим после запятой 2" [3, с.73-74].
Еще раз отметим, что отличная от единицы цифра в первой позиции после нуля первого числа будет нулем. Следовательно, в "искомом" числе после запятой первой будет 2. То есть, число будет 0,2. Сразу же на рисунке находим, что эта точка на отрезке есть – это точка 0,2.
"Затем перейдем к числу, получившему второй номер, и посмотрим на его вторую цифру после запятой. Снова если эта цифра отлична от единицы, то в числе, которое мы пишем, поставим на месте сотых цифру 1, если же эта цифра является единицей, то поставим цифру 2" [там же].
Как и в предыдущем случае, вторым знаком опять будет ноль, поскольку точки расположены рядом и их номера различаются лишь в очень далекой позиции после нуля. Следовательно, и вторая цифра искомого числа будет 2. То есть, это будет число 0,22. По рисунку видно, что и эта точка на отрезке имеется. Она находится правее точки 0,2 и отстоит от неё примерно на 1/5 отрезка от 0,2 до 0,3.
"Точно так же будем действовать и дальше, каждый раз обращая внимание лишь на n-ю цифру числа, получившего n-й номер. В результате мы выпишем некоторое число, например, N=0,1121211. . . [там же].
Но мы уже можем заметить, что такое число не получается. А получится число 0,22222…, в котором цифра 1 появится очень и очень не скоро. И эта цифра, единица также будет тиражироваться многократно. В конечном счете, формируемое число примет вид:

Кстати, можно догадаться по алгоритму, что число будет в основном состоять из двоек, поскольку из 10 цифр единица, которую помечаем двойкой, только одна.
"Ясно, что это число не получило никакого номера: в первом десятичном знаке оно отличается от числа с номером 1, во втором – от числа с номером 2, . . ., в n-м – от числа с номером n и т. д." [3, с.73-74].
Верно это только отчасти, поскольку в целом неверно. Указанные совпадения, действительно, на первом участке отрезка отсутствуют. Однако это найденное число совпадает в первом знаке с бесконечным множеством чисел, соответствующих другой точке отрезка – [0.2, 0.3]. Первым и вторым знаками оно соответствует множеству чисел следующих точек этого отрезка. Первым, вторым и третьим – следующему множеству точек отрезка. И так далее – до бесконечности! Проще говоря, "найденное" число будет находиться правее числа 0,222 и бесконечно близко к нему, никогда не достигая числа 0,223.
"Чтобы читателю стало яснее, как выписывается число, не получившее номера, предположим, что при выбранной нумерации первые пять чисел имеют следующий вид:
4,27364…
–1,31226…
7,95471…
0,62419…
8,56280… " [там же].
Здесь очевидна небольшая неточность, поскольку автором, судя по всему, выбран интервал [0, 1], а на этом интервале таких чисел при выбранной нумерации не будет никогда. Однако эту неточность оставим без критики, просто заменив в них цифру перед запятой на ноль, поскольку пояснение вполне верно описывает принцип формирования искомого числа.
"Тогда число, не получившее номера, будет начинаться со следующих десятичных знаков: 0,12121 . . . Разумеется, не только это, но и многие другие числа не получили номеров (мы могли бы заменять все цифры, кроме 2, на 2, а цифру 2 на 7 или выбрать еще какое-нибудь правило). Но нам достаточно существования одного-единственного числа, не получившего номера, чтобы опровергнуть гипотезу о возможности нумерации всех действительных чисел" [3, с.73-74].
Еще раз отметим, что доказательство на самом деле рассматривает бесконечно малую часть всех действительных чисел – на интервале [0, 1]. Предложенный способ просмотра чисел некорректен. При таком способе все просматриваемые действительные числа на этом интервале будут сгруппированы возле нулевой точки. И ожидаемого числа 0,12121, приведенного в качестве примера, получено не будет никогда. А будет образовано указанное выше число N из бесконечного количества двоек.
Следовательно, в этом отношении доказательство не может достичь успеха, поскольку полученное число точно имеется на близлежащем интервале. Действительно, на интервале, например, от 0,222 до 0,223 присутствуют все возможные комбинации знаков после запятой, в том числе и знаков указанного числа N.
Конечно, в доказательстве явно не указана последовательность номеров чисел. Но под "нам удалось" тоже явно никто не указан. Эти самые "нам" могли перенумеровать числа интервала подряд: сначала все возле нуля, затем они дошли до 0,1 и так далее.
В рассмотренном выше примере с перестановкой запятой (2) такие пропущенные числа очевидны, например, в нем отсутствуют числа 1,111 и 2,222. Однако и традиционный метод нахождения пропущенного числа изначально содержит логическую ошибку, противоречие. Подбор такого числа дает результат, который изначально обязательно должен был быть подсчитанным, пронумерованным натуральным числом. Покажем эту очевидную логическую ошибку такого нахождения отсутствующего числа в более явном виде.
Читать дальшеИнтервал:
Закладка: