Джордан Элленберг - Как не ошибаться. Сила математического мышления
- Название:Как не ошибаться. Сила математического мышления
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2017
- Город:Москва
- ISBN:978-5-00100-466-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джордан Элленберг - Как не ошибаться. Сила математического мышления краткое содержание
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.
Как не ошибаться. Сила математического мышления - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Критики Ньютона в чем-то были правы: его толкование производной далеко от того, что в наши дни принято называть строгой математикой. Проблема заключается в концепции бесконечно малой величины, которая на протяжении тысяч лет была для математиков камнем преткновения. Трудности начались с древнегреческого философа V столетия до нашей эры Зенона, представителя Элейской школы, который часто задавал по поводу физического мира на первый взгляд невинные вопросы, неизменно перераставшие в серьезные философские дискуссии.
Представляю вам самый знаменитый парадокс Зенона в вольном переложении. Я решаю сходить в магазин за мороженым. Конечно, я не смогу преодолеть весь путь до магазина, пока не пройду половину этого пути. А как только я пройду половину пути, я все равно не смогу добраться до магазина, пока не преодолею половину оставшегося пути. Когда я сделаю это, мне все равно предстоит преодолеть половину оставшегося расстояния – и так далее. Я могу подходить к магазину все ближе и ближе, но, сколько бы этапов этого процесса я ни прошел, на самом деле мне так и не удастся добраться до магазина. У меня всегда будет оставаться пусть крохотное, но все же ненулевое расстояние до моих двух шариков мороженого. Эта аргументация применима к любому другому пункту назначения: в равной мере невозможно перейти улицу, или сделать один-единственный шаг, или взмахнуть рукой. Любое движение исключено.
Говорят, что киник Диоген опроверг доводы Зенона довольно простым методом: он встал и прошел из одного конца комнаты в другой. Это весьма хороший довод в пользу того, что движение все же возможно, а значит, что-то не так с доводами Зенона [43] Самое время обратиться к Пушкину: Движенья нет, сказал мудрец брадатый. Другой смолчал и стал пред ним ходить. Сильнее бы не мог он возразить; Хвалили все ответ замысловатый. Но, господа, забавный случай сей Другой пример на память мне приводит: Ведь каждый день пред нами Солнце ходит, Однако ж прав упрямый Галилей. Прим. М. Г.
. Но где же была ошибка?
Разбейте путь в магазин на фрагменты, представленные в числовой форме. Сначала вы проходите половину пути. Затем преодолеваете половину оставшегося пути, то есть 1/4 общего расстояния, и у вас остается еще 1/4 пути. Далее половина оставшегося расстояния составляет 1/8, затем 1/16, затем 1/32. Таким образом, ваше перемещение к магазину можно представить в следующем виде:
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + …
Сложив десять первых членов этой последовательности, вы получите 0,999. Сумма первых двадцати членов последовательности составит 0,999999. Другими словами, вы действительно приближаетесь – очень-очень приближаетесь – к магазину. Тем не менее, сколько бы членов этой последовательности вы ни сложили, вы никогда не получите 1.
Парадокс Зенона во многом напоминает другую головоломку: равна ли периодическая десятичная дробь 0,99999… единице?
Я видел, как люди едва не вступали в драку из-за этого вопроса [44] По правде сказать, речь идет о подростках из летнего математического лагеря.
. По этому поводу ведутся жаркие споры на самых разных веб-сайтах, от страниц фанатов игры World of Warcraft («Вселенная Варкрафта») до форумов, посвященных творчеству Айн Рэнд. Наша естественная реакция на аргументы Зенона такова: «В конечном счете вы непременно получите свое мороженое». Но в данном случае интуиция подсказывает совсем иной ответ. Большинство людей {24} 24 См.: David O. Tall, Rolph L. E. Schwarzenberger . Conflicts in the Learning of Real Numbers and Limits // Mathematics Teaching, 1978, 82, p. 44–49.
(если потребовать от них однозначного ответа) скажут, что 0,9999… не равно 1. Это число даже не похоже на единицу, это уж точно. Оно меньше единицы. Однако ненамного меньше! Подобно любителю мороженого в парадоксе Зенона, оно все ближе и ближе подходит к своей цели, но похоже на то, что так и не доберется до нее.
И все-таки преподаватели математики, в том числе и я сам, скажут им: «Нет, это число равно 1».
Как мне привлечь хоть кого-нибудь на свою сторону? Один хороший способ – привести следующие доводы. Все знают, что:
0,33333… = 1/3.
Умножьте обе стороны на 3 – и получите такой результат:
0,99999… = 3/3 = 1.
Если это вас не убедило, попытайтесь умножить 0,99999… на 10, для чего нужно просто перенести десятичную запятую на одну позицию вправо.
10 × (0,99999…) = 9,99999…
Теперь надо вычесть раздражающее десятичное число из обеих сторон равенства:
10 × (0,99999…) − 1 × (0,99999…) = 9,99999… − 0,99999…
Левая сторона равенства представляет собой просто 9 × (0,99999…), поскольку 10 умножить на что-то минус что-то равно 9 умножить на вышеупомянутую величину. А в правой части равенства нам удалось удалить ужасное бесконечное десятичное число, после чего у нас осталось просто 9. В итоге мы получим:
9 × (0,99999…) = 9.
Если 9 умножить на что бы то ни было равно 9, тогда это что-то должно быть равно 1, не так ли?
Как правило, чтобы убедить людей, подобных доводов вполне довольно. Но будем честны: в этой аргументации кое-чего не хватает. В действительности приведенные выше доводы не устраняют тревожную неопределенность, вызванную заявлением, что 0,99999… = 1; напротив, они представляют собой своего рода алгебраическое устрашение: «Вы верите в то, что 1/3 равно 0,3 в периоде, не так ли? Ведь вы действительно верите в это? »
Или еще хуже: скорее всего, вас убедили мои доводы, в основе которых лежало умножение на 10. Но как насчет следующего довода? Чему равно:
1 + 2 + 4 + 8 + 16 + …?
Здесь троеточие означает, что мы продолжаем вычислять сумму бесконечно, каждый раз прибавляя величину, которая в два раза больше предыдущей. Очевидно, что эта сумма должна быть бесконечной! Однако довод, во многом напоминающий на первый взгляд корректный аргумент в отношении 0,99999…, как будто говорит об обратном. Умножьте представленную выше сумму на 2 – и получите:
2 × (1 + 2 + 4 + 8 + 16 + …) = 2 + 4 + 8 + 16 + …
Этот результат очень похож на исходную сумму; на самом деле это и есть исходная сумма (1 + 2 + 4 + 8 + 16 + …), но без 1 в начале, а это значит, что 2 × (1 + 2 + 4 + 8 + 16 + …) меньше (1 + 2 + 4 + 8 + 16 + …). Другими словами:
2 × (1 + 2 + 4 + 8 + 16 + …) – 1 × (1 + 2 + 4 + 8 + 16 + …) = −1.
Однако, выполнив упрощающие преобразования, левую сторону этого равенства можно привести к той самой сумме, с которой мы начали, получив при этом такой результат:
1 + 2 + 4 + 8 + 16 + … = −1.
Именно в это вы готовы поверить? [45]В то, что прибавление все б о льших и б о льших чисел до бесконечности приведет вас в область отрицательных чисел?
А вот еще более бредовая идея. Чему равно значение бесконечной суммы:
1 − 1 + 1 − 1 + 1 − 1 + …?
Кто-то может сразу же сделать вывод, что эта сумма составляет:
(1 − 1) + (1 − 1) + (1 − 1) + … = 0 + 0 + 0 + …,
и заявит при этом, что сумма множества нолей, пусть и бесконечно большого, должна быть равной 0. С другой стороны, 1 − 1 + 1 – это то же самое, что 1 − (1 − 1), поскольку отрицательное значение отрицательного числа – число положительное. Многократное применение этой операции позволяет нам переписать нашу сумму в таком виде:
Читать дальшеИнтервал:
Закладка: