Кэти О'Нил - Убийственные большие данные. Как математика превратилась в оружие массового поражения

Тут можно читать онлайн Кэти О'Нил - Убийственные большие данные. Как математика превратилась в оружие массового поражения - бесплатно ознакомительный отрывок. Жанр: sociology-book, издательство Литагент АСТ, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Убийственные большие данные. Как математика превратилась в оружие массового поражения
  • Автор:
  • Жанр:
  • Издательство:
    Литагент АСТ
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-17-982583-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Кэти О'Нил - Убийственные большие данные. Как математика превратилась в оружие массового поражения краткое содержание

Убийственные большие данные. Как математика превратилась в оружие массового поражения - описание и краткое содержание, автор Кэти О'Нил, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математические алгоритмы с каждым днем все сильнее подчиняют себе нашу жизнь. Более того: по мнению автора книги, профессора математики и финансового аналитика, эти алгоритмы уже превратились в опасное оружие в руках государства и корпораций – и это оружие нацелено в первую очередь на самые бедные и незащищенные слои населения. Новейшие математические приложения, с помощью которых банки и страховые компании отслеживают каждый наш шаг, претендуют на полную объективность, однако на самом деле в них заложены те же предрассудки и предубеждения, что свойственны их создателям – далеким от совершенства человеческим существам. При этом скрытые принципы работы математических моделей и их тайные критерии охраняются как величайшая коммерческая тайна, а их вердикты, подчас очевидно ошибочные и явно вредные, считаются окончательными и обжалованию не подлежат. Добро пожаловать в прекрасный новый мир – мир убийственных Больших данных!

Убийственные большие данные. Как математика превратилась в оружие массового поражения - читать онлайн бесплатно ознакомительный отрывок

Убийственные большие данные. Как математика превратилась в оружие массового поражения - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Кэти О'Нил
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Реформа системы исполнения наказаний – редкая тема в сегодняшнем поляризованном политическом мире, в которой либералы и консерваторы единодушны. В начале 2015 года братья-консерваторы Чарльз и Дэвид Кох объединились с либеральным аналитическим Центром за американский прогресс, чтобы продвинуть реформу тюрем и снизить число заключенных. Но я подозреваю, что эти межпартийные усилия реформировать тюрьму, как и множество других усилий, практически наверняка выльются в предполагаемо эффективное и справедливое решение – очередную модель, в которую человек будет вводить данные. Такова эпоха, в которой мы живем. Даже если другие инструменты потеснят LSI-R в качестсве основного вида оружия математического поражения, тюрьмы, скорее всего, останутся инкубатором для создания других видов ОМП в огромных масштабах.

Если суммировать все сказанное, вот три главных компонента ОМП: непрозрачность, масштабность и высочайшая степень ущерба. Все эти компоненты присутствуют в той или иной степени в примерах, которые мы будем рассматривать дальше. Разумеется, всегда есть место для возражений. Вы, например, можете сказать, что оценку степени риска рецидива нельзя назвать вполне непрозрачной, потому что она основана на результатах, с которыми заключенные в некоторых случаях могут ознакомиться. И тем не менее она непрозрачна – ведь заключенные не могут посмотреть, как именно их ответы перерабатываются в результат. Подсчитывающий алгоритм от них скрыт.

Есть несколько видов оружия математического поражения, которые, возможно, не вполне соответствуют критерию масштабности. Их распространение пока еще нельзя назвать повсеместным. Но они представляют собой опасные экземпляры, которые со временем неизбежно масштабируются – и, возможно, экспоненциально. Поэтому я включаю эти примеры в свой список.

Наконец, вы можете заметить, что не все виды ОМП приносят исключительно ущерб. В конце концов, они помогают кому-то попасть в Гарвард, кому-то – получить на хороших условиях кредиты или приличные рабочие места, а также сокращают тюремные сроки для некоторых заключенных – для тех, кому повезло. Но вопрос же не в том, что некоторые люди получают от этих моделей пользу, а в том, что столь многие из-за них страдают. Эти модели, усиленные алгоритмами, захлопывают двери перед носом у миллионов людей, зачастую по ничтожнейшим поводам, и не подразумевают возможности апелляции. Эти модели несправедливы.

И вот еще что можно сказать об алгоритмах: они могут переходить из одной области в другую, и это действительно зачастую происходит. Результаты эпидемиологических исследований могут использоваться для предсказаний кассовых сборов; программы, фильтрующие спам, модифицируются, чтобы идентифицировать ВИЧ.

Все это верно и для ОМП. Так что, если математические модели в тюрьмах продемонстрируют кажущийся успех – что на самом деле означает эффективное вмешательство со стороны человека, – они могут распространиться и на всю экономическую систему, наряду с другими ОМП, превратив нас всех просто в расходный материал.

Именно об этой опасности я говорю, именно эта опасность неумолимо возрастает. И следующую поучительную историю об этом может рассказать нам мир финансов.

Посттравматический синдром: мое путешествие к утрате иллюзий

Представьте, что у вас есть в жизни какой-то заведенный ритуал. Каждое утро, перед тем как сесть на поезд из Джолиета до чикагской станции «Лассаль-стрит», вы скармливаете кофейному автомату на перроне два доллара. Автомат возвращает вам два четвертака плюс стаканчик с кофе. Но однажды он возвращает вам четыре четвертака. И если трижды за следующий месяц тот же автомат выдает такой же результат, значит, налицо некая системная ошибка…

Если бы это была небольшая аномалия на финансовых рынках, а не пригородный поезд, то сотрудник хедж-фонда – кто-то вроде меня – мог бы сосредоточить на ней свое внимание. Он бы прочесал информацию за несколько последних лет или даже десятилетий, а затем разработал алгоритм по предсказанию этой ошибки – отклонению в цене на пятьдесят центов, – чтобы делать на нее ставки. Даже самые незначительные отклонения могут принести миллионы тем первым инвесторам, которые их обнаружат. И эти инвесторы будут и дальше извлекать прибыль, пока не произойдет одно из двух: либо феномен исчезнет, либо его обнаружат все остальные участники рынка – в любом случае приток прибыли прекратится. Но в этот момент хороший сотрудник хедж-фонда уже будет идти по горячим следам десятков других крошечных аномалий.

Поиски того, что специалисты по количественному анализу называют рыночными аномалиями ( market inef-ficiency ), сродни поиску сокровищ. Это может быть весело. Когда я втянулась в свою работу в фонде D. E. Shaw , мне начало казаться, что после академических кругов это перемена к лучшему. Хоть мне и нравились преподавание в Барнард-колледже и исследования в области алгебраической теории чисел, прогресс там казался мне мучительно медленным. Я хотела быть частью быстро меняющегося реального мира.

В тот момент хедж-фонды казались мне морально нейтральными институциями – мусорщиками финансовой системы в худшем случае. Я гордилась тем, что пошла работать в фонд Шоу, который называли Гарвардом среди хедж-фондов, и могла демонстрировать тамошним коллегам, как мои умные решения конвертируются в реальные деньги. К тому же зарплата там была в три раза больше профессорской. Начиная работать в фонде, я не могла подозревать, что, помимо прочего, это обеспечит мне место в первом ряду зрителей, наблюдающих катастрофический финансовый кризис, а также преподаст устрашающий урок того, какой вероломной и деструктивной может быть математика. В этом хедж-фонде я впервые вблизи увидела работу ОМП.

В самом начале мне нравилось многое. Все в фонде D. E. Shaw было пронизано математикой. Во множестве фирм заправляют трейдеры: именно они заключают большие сделки, выкрикивают заказы и получают многомиллионные бонусы. Аналитики в этих фирмах находятся на вторых ролях. Но у Шоу трейдеры – это немногим больше, чем просто технические сотрудники: они всего лишь исполнители, а балом правят математики. Моя группа из десяти человек называлась «группой фьючерсов» или «группой прогнозов» ( futures group ). В бизнесе, где все зависит от того, что случится завтра, что может быть более значительным?

Всего у нас было около 50 сотрудников. Сперва – в основном мужчины, за исключением меня. Большинство из них были по происхождению иностранцами. Многие из них пришли из абстрактной математики или физики; некоторые, вроде меня, – из теории чисел. Однако у меня было мало возможностей поговорить с ними о работе. Учитывая то, что наши идеи и алгоритмы были фундаментом бизнеса хедж-фонда, было ясно, что мы являлись потенциальной группой риска: если бы мы вместе вдруг уволились и ушли в какое-то другое место, то смогли бы использовать свои знания для создания мощнейшей конкуренции нашему бывшему месту работы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Кэти О'Нил читать все книги автора по порядку

Кэти О'Нил - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Убийственные большие данные. Как математика превратилась в оружие массового поражения отзывы


Отзывы читателей о книге Убийственные большие данные. Как математика превратилась в оружие массового поражения, автор: Кэти О'Нил. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x