Алексей Лобанов - Энциклопедия финансового риск-менеджмента

Тут можно читать онлайн Алексей Лобанов - Энциклопедия финансового риск-менеджмента - бесплатно ознакомительный отрывок. Жанр: Управление, подбор персонала, издательство Литагент Альпина, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Алексей Лобанов - Энциклопедия финансового риск-менеджмента краткое содержание

Энциклопедия финансового риск-менеджмента - описание и краткое содержание, автор Алексей Лобанов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга – первое в России издание учебно-энциклопедического характера, в котором в соответствии с международными стандартами освещаются основные вопросы финансового риск-менеджмента. Издание дополнено новыми материалами по организационным аспектам риск-менеджмента, моделям эволюции процентных ставок, рискам страхования банковских вкладов и анализу макроэкономических рисков. Рассмотрены современные методы количественной оценки и управления финансовыми рисками, теория экстремальных значений, соглашения о форвардной процентной ставке и др. Дан систематизированный обзор методов количественного анализа, используемых в риск-менеджменте, моделей ценообразования и стратегий применения производных финансовых инструментов. Приведен обзор основных положений Нового базельского соглашения по капиталу 2004 г., выполненных на основе последней редакции соглашения от ноября 2006 г.
Книга предназначена для профессионалов, непосредственно занимающихся оценкой и управлением рисками, преподавателей, студентов и аспирантов экономических факультетов вузов. Она также может использоваться для подготовки к сдаче международных экзаменов по финансовому риск-менеджменту на получение сертификатов Financial Risk Manager (FRM®) и Professional Risk Manager (PRM®).

Энциклопедия финансового риск-менеджмента - читать онлайн бесплатно ознакомительный отрывок

Энциклопедия финансового риск-менеджмента - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Алексей Лобанов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Указанным выше способом можно построить сколь угодно много траекторий - фото 367

Указанным выше способом можно построить сколь угодно много траекторий случайного процесса Ито.

1.29. Основы теории экстремальных значений

Дана последовательность независимых одинаково распределенных случайных величин: η 1, η 2…., η n…. с функцией распределения F( x ).

Можно рассмотреть новую последовательность случайных величин {M n}, где M n= max {η 1, η 2…., η n….}, n = 1, 2, 3…..

Функция распределения случайной величины M nопределяется следующим образом:

Теорема ФишераТиппета Дана последовательность независимых одинаково - фото 368 Теорема ФишераТиппета Дана последовательность независимых одинаково - фото 369
Теорема Фишера-Типпета

Дана последовательность независимых одинаково распределенных случайных величин η 1, η 2…., η n…..

Следствие из теоремы Фишера Типпета Если случайные величины η - фото 370 Следствие из теоремы Фишера Типпета Если случайные величины η 1 η 2 η - фото 371 Следствие из теоремы Фишера Типпета Если случайные величины η 1 η 2 η - фото 372
Следствие из теоремы Фишера – Типпета

Если случайные величины η 1, η 2, …, η nнезависимы и одинаково распределены, а n достаточно велико, то функция распределения случайной величины M n = max{η 1, η 2, …, η n} практически совпадает с функцией обобщенного распределения экстремальных значений (при подходящем выборе параметров ξ, μ и σ).

Предположим, что случайная величина M n= max{η 1, η 2, …, η n} имеет распределение Фреше, т. е.

Тогда справедливы следующие утверждения 1 Плотность распределения случайной - фото 373

Тогда справедливы следующие утверждения:

1. Плотность распределения случайной величины M nимеет следующий вид (рис. 1.32).

2 Математическое ожидание и дисперсии случайной величины M nможно найти по - фото 374

2. Математическое ожидание и дисперсии случайной величины M nможно найти по формулам:

Параметры ξ μ σ можно подобрать на основе статистических данных Для - фото 375

Параметры ξ, μ, σ можно подобрать на основе статистических данных.

Для измерений экстремальных событий может быть использовано распределение Парето (Pareto distribution), которое определяется функцией:

Для большого класса случайных величин η при достаточно большом пороговом - фото 376

Для большого класса случайных величин η при достаточно большом пороговом значении u справедливо равенство:

Соотношение 185 позволяет оценивать хвосты распределений на основе - фото 377

Соотношение (1.85) позволяет оценивать «хвосты» распределений на основе статистических данных.

Литература

1. Барбаумов В. Е., Гладких И. М., Чуйко А. С. Финансовые инвестиции: Учебник. – М.: Финансы и статистика, 2003.

2. Доугерти К. Введение в эконометрику. – М.: ИНФРА-М, 2001.

3. Дуглас Л. Г. Анализ рисков операций с облигациями на рынке ценных бумаг. – М.: Филинъ, 1998.

4. Количественные методы финансового анализа / Под. ред. С. Дж. Брауна, М. П. Крицмена. – М.: ИНФРА-М, 1996.

5. Fabozzi F. J. Fixed income mathematics. 3rd ed. – N.Y.: McGraw-Hill, 1997.

6. Fabozzi F. J. (ed.) Advances in fixed income valuation, modeling and risk management. – Pennsylvania: Associates New Hope, 1997.

II. Производные финансовые инструменты

В. Е. Барбаумов

2.1. Введение

В настоящее время для идентификации и измерения рисков широко используется теория производных финансовых инструментов. Изучение производных финансовых инструментов важно еще и потому, что сами эти инструменты являются источниками рисков как для различных финансовых институтов, так и для финансового рынка в целом. Кроме того, производные финансовые инструменты – одно из важнейших средств хеджирования тех или иных рисков. Именно поэтому данная глава посвящена изучению производных финансовых инструментов.

В главе рассматриваются как простейшие производные финансовые инструменты – форвардные и фьючерсные контракты, свопы, так и более сложные – опционы различных видов и инструменты со встроенными опционами. Основное внимание уделяется методам оценки таких инструментов и основным направлениям их использования.

Важнейшими производными финансовыми инструментами являются классические европейские и американские опционы. Подробно рассматриваются методы оценки таких опционов в случае, когда стоимость исходных активов определяется геометрическим броуновским движением. В частности, приводятся формулы Блэка-Шоулза для оценки европейских опционов и разбирается их использование. Применение классических опционов для хеджирования основных финансовых рисков также рассматривается в данной главе.

В заключительной части главы обосновывается построение биномиальной модели процентной ставки и ее использование для оценки финансовых инструментов, производных от процентных ставок: кэпов, флоров, свопционов и облигаций со встроенными опционами. Кроме того, приводится обзор и других моделей временной структуры процентных ставок.

2.2. Форвардные контракты и их основные характеристики

В настоящее время на развитых финансовых рынках важную роль играют так называемые производные инструменты (derivatives). Простейшим из производных инструментов является форвардный контракт.

Форвардный контракт, или форвард (forward), представляет собой соглашение купить или продать некоторые активы, называемые «базисными» (underlying), в определенный момент времени в будущем по заранее установленной цене. Обычно форвардные контракты заключаются между финансовым институтом и одним из его корпоративных клиентов. Таким образом, в форвардном контракте всегда присутствуют две стороны. При этом говорят, что сторона, согласившаяся в будущем купить активы, занимает длинную позицию, а сторона, согласившаяся продать активы, – короткую.

Так как стороны форвардного контракта равноправны и подвержены одному и тому же риску, то при заключении форвардного контракта никто никому ничего не платит. Это означает, что в момент заключения форвардного контракта стоимость его равна нулю.

Цену, по которой стороны согласились купить (и соответственно продать) активы, называют ценой поставки активов (delivery price). Цену поставки обозначим через K. Момент времени, когда происходит покупка и продажа активов, называют датой исполнения форвардного контракта, или датой поставки. Момент исполнения форвардного контракта обозначим через Т.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Лобанов читать все книги автора по порядку

Алексей Лобанов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Энциклопедия финансового риск-менеджмента отзывы


Отзывы читателей о книге Энциклопедия финансового риск-менеджмента, автор: Алексей Лобанов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x