Сергей Толкачев - Активные данные. Философское программирование
- Название:Активные данные. Философское программирование
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005680914
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Толкачев - Активные данные. Философское программирование краткое содержание
Активные данные. Философское программирование - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

За эти годы в мире информатики было решено множество проблем. Но чем шире горизонт – тем больше открывается неизвестного, и вместе с этим появляются новые задачи, среди которых, в первую очередь нужно выделить обработку знаний. До сих пор, основным объектом программирования являлись данные. Знания – это значительно более сложная система, в которой данные соединяются с процедурами, а обмен знаниями, это контекстно-зависимый процесс. В процессе обмена могут участвовать группы, где каждый участник имеет своё уникальное состояние.
Данные, информация и знания – три основополагающие категории, как в биологических, так и в компьютерных системах. Термин данные относится к неопределимым аксиоматическим понятиям, которые, чаще всего объясняют, используя косвенную рекурсию. Например, согласно Википедии, данные – это факты или события , а статистик и специалист по машинному обучению определит их как числа или вектор чисел . Но если продолжить уточнение: а что есть факты или числа , то круг очень быстро замкнется. Однако если мы зададим разумные области ограничений, то оказывается, что этот термин поддается конструктивному определению.

Один из концептуальных способов описания поведения и построения моделей самых разнообразных сложных систем, носит название «Метод чёрного ящика». В классическом чёрном ящике важно только то, что входит и выходит . Именно это мы и будем рассматривать как данные . Входные и выходные данные – это поток сигналов, который из всего огромного разнообразия сигналов внешнего мира, с одной стороны выделяет и воспринимает, а с другой, генерирует и возвращает обратно, конкретная система. Если же мы приоткроем ч ё рный ящик и заглянем внутрь, то у нас появляются некоторые знания, с помощью которых можно определить, какой компонент воспринимает сигналы на входе, а какой отвечает за их генерацию на выходе, в теперь уже сером ящике . И наконец у программистов, вход и выход связаны программой , где каждый шаг понятен и определен. При таком подходе у нас появляются количественные характеристики входных и выходных компонент, такие как пропускная способность, формат сигнала, объемы памяти и др. Только не нужно забывать, что декомпозируя ящик , можно этот же подход применить на любом уровне и для любого функционального блока внутри. Так, например, минимальным компонентом в компьютере можно считать ячейку памяти, а в биологической системе – отдельную клетку, хотя всегда можно продолжить декомпозицию, как клетки, так и ячейки памяти.
В классической модели компьютера данные поступают и передаются вовне через устройства ввода/вывода. В биологических системах, данные – это разнообразные физические взаимодействия или молекулярные объекты, которые могут восприниматься сенсорными клетками, и на которые реагируют рефлекторные механизмы. Данные могут генерироваться источником целенаправленно, например радиостанцией, которая создаёт и передает сообщения в сеть слушателей, или человеком, порождающим поток слов во время разговора в интернете. Это могут быть любые физические сигналы, возникающие в окружающем нас мире: космическое излучение астрономических объектов или молекулы запаха цветка в воздухе. И все эти сигналы превращаются в информацию в тот момент, когда получатель воспринимает их и интерпретирует в соответствии со своим состоянием. И уже из информации могут быть получены знания , которые образуют индивидуальную ассоциативно-связанную систему фактов и процедур.

В биологических системах, физиология знаний – это изменения состояний нейронов, свойств нервов и появление новых ассоциативных или моторных связей . Мы еще слабо представляем, как всё это происходит в комплексе, но некоторые детали этого процесса уже более или менее понятны. Например, для того, чтобы установить новую связь, целевой нейрон выделяет нетрины – специальные макромолекулы, которые привлекают аксоны, а исходный нейрон инициирует рост нерва, который «по запаху» должен найти свою цель. Всё выглядит элементарно для пары нейронов. Но если попробовать представить себе сложнейшую композицию асинхронных процессов, где один исполнитель начинает, другой подхватывает и продолжает, и всё это происходит в миллиардах нейронов, между которыми появляются триллионы связей, и в этой гармонии возникают новые индивидуальные знания, то становятся понятным, почему Д. Кнут и Э. Дейкстра сравнивают программирования с музыкой, и утверждение биохимика, что «мы живем до тех пор, пока внутри нас звучит симфония запахов» .
Биохимики – люди в меру циничные, поскольку знают, что человеческие чувства – это производные химических процессов, которые в норме инициируются нервной системой. Для того, чтобы то или иное чувство возникло, нужно заставить эту систему работать, и хотя человек может и обмануть самого себя, испытав иллюзию чувств при помощи искусственных наркотических субстанций, но ничего нового при этом у него не возникнет. «Получается, что когда мы узнаём нечто, у нас возникает биохимическое Чувство Нового? И пока наш мозг способен выделять нетрины, мы способны удивляться и учиться?» – спросит романтичный программист. Вполне возможно, что чувство нового , это одно из основополагающих и мотивирующих в индивидуальном развитии думающего существа. И живое существо активно живет и развивается лишь до тех пор, пока его мозг способен воспринимать и устанавливать новые связи между нейронами. А в понимании того, как и почему нетрины притягивают аксоны, и лежит ключ к созданию систем по обработке знаний.
Эволюция биологических систем происходит от простейшей, но далеко не простой ! клетки, к простейшим, а в последующем, ко всё более усложняющимся организмам. В какой-то момент у организмов появляется нервная система, у которой уже на следующем этапе развития, формируется головной мозг.
клетка → системы клеток → нейроны → головной мозг
Развитие информационных машин происходит похожим образом: от простых компьютеров – к сетям и облакам. Затем, на очередном этапе эволюции, появляется искусственный интеллект, у которого в дальнейшем должен будет сформироваться аналог головного мозга – система искусственных нейронов ?
Читать дальшеИнтервал:
Закладка: