Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел]

Тут можно читать онлайн Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел] - бесплатно ознакомительный отрывок. Жанр: Детская образовательная литература, издательство Государственное Издательство Детской Литературы, год 1954. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел] краткое содержание

Занимательная арифметика [Загадки и диковинки в мире чисел] - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В этой книге автор предлагает удивительную игру с числами. Книга дает возможность получить много интересных и полезных сведений о математике.
Ещё, эти задачи помогут научиться мыслить используя логическое мышление. В книге приведены интересные рассказы о приёмах арифметики в различных эпохах. Весьма полезным в наше время для школьников и взрослых могут оказаться приёмы быстрого счета.

Занимательная арифметика [Загадки и диковинки в мире чисел] - читать онлайн бесплатно ознакомительный отрывок

Занимательная арифметика [Загадки и диковинки в мире чисел] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Яков Перельман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

При обтесывании каменных глыб египтяне пользовались растянутым шнурком, которым выявлялись неровности на обрабатываемой поверхности. Инструментами каменотесов были металлические зубила и деревянные молотки с конической головкой. Во всех крупных египетских постройках, включая пирамиды, огромные и тяжелые глыбы тесаного камня для лучшей плотности прилегания и устойчивости клали гладкой стороной внутрь.

Приведу более позднее доказательство: мы знаем, что отношение между длиной окружности и ее диаметром есть постоянная величина, хорошо известная современным школьникам. Чтобы вычислить длину окружности, достаточно умножить ее диаметр на 3,1416.

Математики древности знали это отношение лишь грубо приближенно.

Но вот, если сложить четыре стороны основания пирамиды, мы получим для ее обвода 931,22 м. Разделив же это число на удвоенную высоту (2 х 148,208), имеем в результате 3,1416, то-есть отношение длины окружности к диаметру. (Другие авторы из тех же измерений пирамиды выводят значение π с еще большей точностью: 3,14159. — Я. П .)

Этот единственный в своем роде памятник представляет собою, следовательно, материальное воплощение числа "пи", игравшего столь важную роль в истории математики. Египетские жрецы имели, как видим, точные представления по ряду вопросов, которые считаются открытиями ученых позднейших веков [35] Значение "пи" с той точностью, которая получена здесь из соотношений размеров пирамиды, стало известно европейским математикам только в XVI веке. .

Еще удивительнее другое соотношение: если сторону основания пирамиды разделить на точную длину года — 365,2422 суток, то получается как раз 10 000000-я доля земной полуоси — с точностью, которой могли бы позавидовать современные астрономы…

Далее: высота пирамиды составляет ровно миллиардную долю расстояния от Земли до Солнца — величины, которая европейской науке стала известна лишь в конце XVIII века. Египтяне 5000 лет назад знали, оказывается, то, чего не знали еще ни современники Галилея [36] Галилей Галилео (1564–1642) — великий итальянский физик, механик и астроном, один из основателей точного естествознания. и Кеплера [37] Кеплер Иоганн (1571–1630) — выдающийся немецкий астроном, открывший на основе учения великого польского ученого Николая Коперника законы движения. , ни ученые эпохи Ньютона [38] Ньютон Исаак (1643–1727) — величайший английский математик, астроном и физик, всю жизнь посвятивший исключительно научным занятиям. . Неудивительно, что изыскания этого рода породили на Западе обширную литературу.

А между тем все это — не более как игра цифрами. Дело представится совсем в другом свете, если подойти к нему с оценкой результатов приближенных вычислений.

Рассмотрим же по порядку те примеры, которые мы привели.

1. О числе "пи". Арифметика приближенных чисел утверждает, что если в результате действия деления желаем получить число с шестью верными цифрами (3,14159), мы должны иметь в делимом и делителе по крайней мере столько же верных цифр. Это значит — в применении к пирамиде, — что для получения шестизначного "пи" надо было измерить стороны основания и высоту пирамиды с точностью до миллионных долей результата, то-есть до 1 мм. Астроном Море приводит для высоты пирамиды 148,208 м, на первый взгляд как будто действительно с точностью до 1 мм.

Но кто поручится за такую точность измерения пирамиды? Вспомним, что в лабораториях Института мер (ВИМС), где производятся точнейшие в мире измерения, не могут при измерении длины добиться такой точности (получают при измерении длины лишь шесть верных цифр). Понятно, насколько грубее может быть выполнено измерение каменной громады в пустыне. Правда, при точнейших землемерных работах (при измерении так называемых "базисов") можно и на местности достичь такой же точности, как и в лаборатории, то-есть ручаться за шесть десятичных знаков. Но, конечно, невозможно осуществить это в условиях измерения пирамиды. К тому же истинных, первоначальных размеров пирамиды давно нет в натуре, так как облицовка сооружения выветрилась, и никто не знает, какой она была толщины. Чтобы быть добросовестным, надо брать размеры пирамиды в целых метрах, а тогда получается довольно грубое "пи", не более точное, чем то, которое давно известно из математического папируса Ринда.

Если пирамида действительно есть каменное воплощение числа "пи", то воплощение это, как видим, далеко не совершенное. Но вполне допустимо, что пирамида не сооружена ради выражения именно этого соотношения. В пределы приближенных трехзначных чисел для размеров пирамиды хорошо укладываются и другие допущения. Возможно, например, что для высоты пирамиды было взято 2/ 3ребра пирамиды или 2/ 3диагонали ее основания. Вполне допустимо и то соотношение, которое было указано Геродотом: что высота пирамиды есть квадратный корень из площади боковой грани. Все это — догадки, столь же вероятные, как и "гипотеза пи".

2. Следующее утверждение касается продолжительности года и длины земного радиуса: если разделить сторону основания пирамиды на точную длину года (число из семи цифр), то получим в точности 10 000 000-ю долю земной оси (число из пяти цифр). Но раз мы уже знаем, что в делимом у нас не больше трех верных цифр, то ясно, какую цену имеют здесь эти семь и пять знаков в делителе и в частном. Арифметика может ручаться в этом случае только за три цифры в длине года и земного радиуса. Год в 365 суток и земной радиус около 6400 км — вот числа, о которых мы вправе здесь говорить.

3. Что же касается расстояния от Земли до Солнца, то здесь недоразумение иного рода. Странно даже, как приверженцы теории могут не замечать допускаемой ими здесь логической ошибки. Ведь если, как они утверждают, сторона пирамиды составляет известную долю земного радиуса, а высота — известную долю основания, то нельзя уже говорить, будто та же высота составляет определенную долю расстояния до Солнца. Что-нибудь одно — либо то, либо другое. А если случайно тут обнаруживается любопытное соответствие обеих длин, то оно всегда существовало в нашей планетной системе, и никакой заслуги жрецов в этом быть не может.

Сторонники рассматриваемой теории идут еще далее: они утверждают, что масса пирамиды составляет ровно одну тысячебиллионную долю массы земного шара. Это соотношение, по их мнению, не может быть случайным и свидетельствует о том, что древнеегипетские жрецы знали не только геометрические размеры нашей планеты, но и задолго до Ньютона и Кавендиша [39] Кавендиш Генри (1731–1810) — английский физик. исчислили ее массу—"взвесили" земной шар.

Здесь та же самая нелогичность, что и в примере с расстоянием от Земли до Солнца. Совершенно нелепо говорить о том, будто масса пирамиды "выбрана" в определенном соответствии с массой земного шара. Масса пирамиды определилась с того момента, как назначены были размеры ее основания и высоты.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная арифметика [Загадки и диковинки в мире чисел] отзывы


Отзывы читателей о книге Занимательная арифметика [Загадки и диковинки в мире чисел], автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x