Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел]
- Название:Занимательная арифметика [Загадки и диковинки в мире чисел]
- Автор:
- Жанр:
- Издательство:Государственное Издательство Детской Литературы
- Год:1954
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел] краткое содержание
Ещё, эти задачи помогут научиться мыслить используя логическое мышление. В книге приведены интересные рассказы о приёмах арифметики в различных эпохах. Весьма полезным в наше время для школьников и взрослых могут оказаться приёмы быстрого счета.
Занимательная арифметика [Загадки и диковинки в мире чисел] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Как делить на 2, мы уже знаем (стр. 28) — способ этот очень прост.
Гораздо сложнее прием деления на 3: он состоит в замене деления умножением на бесконечную периодическую дробь 0,333… (известно, что 0,333… = 1/ 3) — Умножать с помощью счетов на 3 мы умеем; уменьшать в 10 раз тоже несложно: надо лишь переносить делимое одной проволокой ниже. После не долгого упражнения этот прием деления на 3, на первый взгляд длинноватый, оказывается довольно удобным на практике.
Деление на 4, конечно, заменяется двукратным делением на 2.
Еще проще деление на 5: его заменяют делением на 10 и удвоением результата.
На 6 делят в два приема: сначала делят на 2, потом полученное делят на 3.
На 8 делят в три приема: сначала на 2, потом полученное вновь на 2 и затем еще раз на 2.
Очень интересен прием деления на 9. Он основан на том, что 1/ 9= 0,1111… Отсюда ясно, что вместо деления на 9 можно последовательно складывать 0,1 делимого + 0,01 его и т. д. [11] Этот прием полезен и для устного деления на 9.
Всего проще, как видим, делить на 2, 10 и 5 и, конечно, на такие кратные им числа, как 4, 8, 16, 20, 25, 40, 50, 75, 80, 100. Эти случаи деления не представляют трудности и для малоопытного счетчика.
С отдаленными предками наших конторских счетов связаны некоторые пережитки старины в языке и обычаях. Мало кто подозревает, например, что, собственно, мы делаем, завязывая иногда "для памяти" узелок на носовом платке. Мы повторяем то, что некогда с большим смыслом делали наши предки, "записывая" таким образом итог счета на шнурках. Веревка с узлами представляла собой некогда счетный прибор, в принципе аналогичный нашим счетам и, без сомнения, связанный с ними общностью происхождения. Это — "веревочный абак". Однократно завязанный узел на веревке означал 10, двукратно — 100, троекратно — 1000 и т. д.
Немецкие купцы, занятые счетом на счетных досках. (Гравюра 1518 года.)
С абаком же связаны и такие распространенные теперь слова, как "банк" и "чек". "Банк" по-немецки означает " скамья ". Что же общего между финансовым учреждением—"банком" в современном смысле слова — и скамьей? Оказывается, здесь далеко не простое совпадение названий. Абак в форме скамьи был широко распространен в торговых кругах Германии в XV–XVI веках; каждая меняльная лавка или банковская контора прежде всего характеризовалась присутствием "счетной скамьи", — естественно, что скамья стала синонимом банка.
Более косвенное отношение к абаку имеет слово "чек". Оно английского происхождения и производится от глагола "чекер" (checker) — графить; "чекеред" (графленый) называли разграфленную в форме абака кожаную салфетку, которую в XVI–XVII веках английские коммерсанты носили с собой в свернутом виде и, в случае надобности произвести подсчет, развертывали на столе. Бланки для расчетов графились по образцу этих свертывающихся абаков, и неудивительно, что на них перенесено было в сокращенном виде самое название этих счетных приборов.
Любопытно, откуда произошло выражение "остаться на бобах". Оно относится к тому времени, когда все денежные расчеты производились на абаке, на счетном столе или скамье, с помощью бобов, заменявших косточки наших счетов. "Один считает на камешках, другой — на бобах", — читаем у Кампанеллы [12] Кампанелла Томмазо (1568–1639) — итальянский мыслитель, один из ранних представителей утопического коммунизма.
в "Городе Солнца" (1602). Человек, проигравший свои деньги, оставался с одними бобами, выражавшими сумму его проигрыша, — отсюда и соответствующий оборот речи.
Счетный жетон — "пенязь" — немецкой работы 1691 года с изображением счетной доски
Глава 3
НЕМНОГО ИСТОРИИ
Зажигая привычным движением спичку, мы иной раз еще задумываемся над тем, скольких трудов стоило добывание огня нашим предкам, даже не очень отдаленным.
Но мало кто подозревает, что нынешние способы выполнения арифметических действий тоже не всегда были так просты и удобны, так прямо и быстро приводили к результату.
Предки наши пользовались гораздо более громоздкими и медленными приемами. И если бы школьник XX века мог перенестись за четыре, за три века назад, он поразил бы наших предков быстротой и безошибочностью своих арифметических выкладок. Молва о нем облетела бы окрестные школы и монастыри, затмив славу искуснейших счетчиков той эпохи, и со всех сторон приезжали бы учиться у нового, великого мастера счетного дела.
Особенно сложны и трудны были в старину действия умножения и деления — последнее всего больше. "Умноженье — мое мученье, а с делением — беда", — говорили в старину. Тогда не существовало еще, как теперь, одного выработанного практикой приема для каждого действия. Напротив, в ходу была одновременно чуть не дюжина различных способов умножения и деления — приемы один другого запутаннее, твердо запомнить которые не в силах был человек средних способностей. Каждый учитель счетного дела держался своего излюбленного приема, каждый "магистр деления" (были такие специалисты) восхвалял собственный способ выполнения этого действия. И все эти приемы умножения— "шахматами, или органчиком", "загибанием", "по частям, или в разрыв", "крестиком", "решеткой", "задом наперед", "ромбом", "треугольником", "кубком", или "чашей", "алмазом" и проч., а также все способы деления, носившие не менее затейливые наименования, соперничали друг с другом в громоздкости и сложности. Усваивались они с большим трудом и лишь после продолжительной практики. Признавалось даже, что для овладения искусством быстрого и безошибочного умножения и деления многозначных чисел нужно особое природное дарование, исключительные способности; рядовым людям премудрость эта недоступна. "Трудное дело — деление" (dura cosa е la partita) — гласила старинная итальянская поговорка. Оно и в самом деле было трудно, если принять во внимание утомительные методы, какими выполнялось тогда это действие. Нужды нет, что способы эти носили подчас довольно игривые названия; под веселым названием скрывался длиннейший ряд запутанных манипуляций. В XVI веке кратчайшим и удобнейшим способом считалось, например, деление "лодкой или галерой".
Знаменитый итальянский математик того времени — Николай Тарталья (XVI век) в своем обширном учебнике арифметики писал об этом способе следующее: "Второй способ деления называется в Венеции [13] Венеция и некоторые другие государства Италии в XIV–XVI веках вели обширную морскую торговлю, и потому в этих странах приемы счета были, ради коммерческих надобностей, разработаны раньше, чем в других. Лучшие труды по арифметике появились в Венеции. Многие итальянские термины коммерческой арифметики сохранились еще в настоящее время.
лодкой или галерой вследствие некоторого сходства фигуры, получающейся при этом, потому что при делении некоторых родов чисел составляется фигура, похожая на лодку, а в других — на галеру, которая в самом деле красиво выглядит; галера получается иной раз хорошо отделанная и снабженная всеми принадлежностями— выкладывается из чисел так, что она действительно представляется в виде галеры с кормою и носом, мачтою, парусами и веслами".
Интервал:
Закладка: