Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел]

Тут можно читать онлайн Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел] - бесплатно ознакомительный отрывок. Жанр: Детская образовательная литература, издательство Государственное Издательство Детской Литературы, год 1954. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел] краткое содержание

Занимательная арифметика [Загадки и диковинки в мире чисел] - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В этой книге автор предлагает удивительную игру с числами. Книга дает возможность получить много интересных и полезных сведений о математике.
Ещё, эти задачи помогут научиться мыслить используя логическое мышление. В книге приведены интересные рассказы о приёмах арифметики в различных эпохах. Весьма полезным в наше время для школьников и взрослых могут оказаться приёмы быстрого счета.

Занимательная арифметика [Загадки и диковинки в мире чисел] - читать онлайн бесплатно ознакомительный отрывок

Занимательная арифметика [Загадки и диковинки в мире чисел] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Яков Перельман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Учитель глядит в ответы и видит 75 и 63.

"Гм!., странно… Сложить 5 и 3, а потом делить 540 на 8? Так, что ли? Нет, не то".

— Решайте же! — говорит он Пете.

— Ну, чего думаешь? Задача-то ведь пустяковая! — говорит Удодов Пете. — Экий ты дурак, братец! Решите уж вы ему, Егор Алексеич.

Егор Алексеич (репетитор. — Я. П .) берет в руки грифель и начинает решать. Он заикается, краснеет, бледнеет.

— Эта задача, собственно говоря, алгебраическая, — говорит он. — Ее с иксом и игреком решить можно. Впрочем, можно и так решить. Я вот разделил… понимаете? Теперь вот надо вычесть… понимаете? Или вот что… Решите мне эту задачу к завтраму… Подумайте..

Петя ехидно улыбается. Удодов тоже улыбается. Оба они понимают замешательство учителя. Ученик VII класса еще пуще конфузится, встает и начинает ходить из угла в угол.

Русские конторские счеты И без алгебры решить можно говорит Удодов - фото 12

Русские конторские счеты.

— И без алгебры решить можно, — говорит Удодов, протягивая руку к счетам и вздыхая. — Вот, извольте видеть…

Он щелкает на счетах, и у него получается 75 и 63, что и нужно было.

— Вот-с… по-нашему, по-неученому".

Эта история с задачей, заставляющая нас смеяться над конфузом злосчастного репетитора, задает нам сама три новые задачи. А именно:

1. Как намеревался репетитор решить задачу алгебраически?

2. Как должен был решить ее Петя?

3. Как решил ее отец Пети на счетах "по-неученому"?

На первые два вопроса, вероятно, без труда ответят если не все, то весьма многие читатели нашей книжки. Третий вопрос не так прост. Но рассмотрим их по порядку.

1. Семиклассник-репетитор готов был решать задачу, с иксом и игреком", будучи уверен, что задача — "собственно говоря, алгебраическая". И он, надо думать, легко справился бы с ней, прибегнув к помощи системы уравнений (только не неопределенных, как ему казалось). Составить два уравнения с двумя неизвестными для данной задачи очень нетрудно; вот они:

х + у = 138; 5х + 3у = 540,

где х — число аршин синего, а у — черного сукна.

2. Однако задача легко решается и арифметически. Если бы вам пришлось решать ее, вы начали бы с предположения, что все купленное сукно было синее, тогда за партию в 138 аршин синего сукна пришлось бы уплатить 5 х 138 = 690 руб.; это на 690 – 540 = 150 руб. больше того, что было заплачено в действительности [9] Можно начинать с предположения, что все купленное сукно было черное. Предоставляем это сделать самому читателю. — Ред. . Разница в 150 руб. указывает, что в партии имелось и более дешевое, черное сукно — по 3 руб. аршин. Дешевого сукна было столько, что из двух рублей разницы на каждом аршине составилось 150 руб.: очевидно, число аршин черного сукна определится, если разделить 150 на 2. Получаем ответ — 75; вычтя эти 75 аршин из общего числа 138 аршин, узнаем, сколько было синего сукна: 138 — 75 = 63. Так и должен был решать задачу Петя.

3. На очереди третий вопрос: как решил задачу Удодов-старший?

В рассказе говорится очень кратко: "Он щелкает на счетах, и у него получается 75 и 63, что и нужно было".

В чем, однако, состояло это "щелканье на счетах"?

Каков способ решения задачи с помощью счетов?

Разгадка такова: злополучная задача решается на счетах тем же приемом, что и на бумаге, — теми же арифметическими действиями. Но выполнение их упрощается благодаря преимуществам, которые наши русские счеты предоставляют всякому, умеющему с ними обращаться. Очевидно, "отставной губернский секретарь" Удодов хорошо умел считать на счетах, потому что их косточки быстро, без помощи алгебры, открыли ему то, чего репетитор-семиклассник добивался узнать "с иксом и игреком". Проследим же, какие действия должен был проделать на счетах Петин отец.

Прежде всего ему нужно было, как мы знаем, умножить 138 на 5. Для этого он, по правилам действий на счетах, умножил сначала 138 на 10, то-есть просто перенес 138 одним рядом выше, а затем разделил это число пополам опять-таки на счетах же. Деление начинают снизу: откидывают половину косточек, отложенных на каждой проволоке; если число косточек на данной проволоке нечетное, то выходят из затруднения, "раздробляя" одну косточку этой проволоки на 10 нижних.

Чтобы умножить 138 на 5 при помощи конторских счетов поступают так сначала на - фото 13

Чтобы умножить 138 на 5 при помощи конторских счетов, поступают так: сначала на счетах откладывают 138; затем простым переносом отложенных косточек на один ряд вверх число 138 множится на 10; после этого его делят на 2 (десятки уже разделены), и таким образом получают результат 138 х 5.

В нашем, например, случае делят 1380 пополам так: на нижней проволоке, где отложено 8 косточек, откидывают 4 косточки (4 десятка), на средней проволоке из 3 косточек откидывают 1, а из оставшихся 2 косточек 1 заменяют мысленно 10 нижними и делят пополам, добавляя 5 десятков к косточкам нижней; на верхней проволоке раздробляют 1 косточку, прибавляя 5 сотен к косточкам средней проволоки. В результате на верхней проволоке совсем не остается косточек; на средней 1 + 5 = 6 сотен, на нижней 4 + 5 = 9 десятков. Итого 690 единиц. Выполняется все это быстро, автоматически.

Далее Удодову-старшему нужно было из 690 вычесть 540. Как проделывается это на счетах, всем известно.

Наконец полученную разность, 150, оставалось разделить пополам: Удодов откинул из 5 косточек (десятков) 3, отдав 5 единиц нижнему ряду косточек; потом из 1 косточки на проволоке сотен отдал 5 десятков нижнему ряду: получилось 7 десятков и 5 единиц, то-есть 75.

Все эти простые действия выполняются на счетах, конечно, гораздо скорее, чем тут описано.

СЧЕТЫ

Есть много полезных вещей, которых мы не ценим только потому, что, находясь постоянно у нас под руками, они превратились в слишком обыденный предмет домашнего обихода. К числу таких недостаточно ценимых вещей принадлежат и наши конторские счеты — русская народная счетная машина, представляющая собой видоизменение знаменитого абака, или "счетной доски", наших отдаленных предков.

Саламинская доска древнегреческий абак на мраморной доске размером 150х75 - фото 14

"Саламинская доска" — древнегреческий абак на мраморной доске размером 150х75 см, найденный на острове Саламин в 1948 году. Левые колонки служили для отсчета драхм и талантов; правые — для долей драхмы: оболов и халков. На абаке отложено: 4873 драхмы 2 обола 5 халков.

Древнегреческий сборщик податей, считающий на абаке (с античной вазы в Неаполе). Абак не имеет колонок, и камешки кладутся прямо против букв, обозначающих разряды: на нем выложены 1231 драхма 4 обола.

Древние народы — египтяне, греки, римляне — употребляли при вычислениях счетный прибор абак. Это была доска (стол), разграфленная на полосы, по которым передвигали особые шашки, игравшие роль косточек наших счетов. Такой вид имел греческий абак. Абак римский имел форму медной доски с желобами (прорезами), в которых передвигались пуговки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная арифметика [Загадки и диковинки в мире чисел] отзывы


Отзывы читателей о книге Занимательная арифметика [Загадки и диковинки в мире чисел], автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x