Марат Авдыев - Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей

Тут можно читать онлайн Марат Авдыев - Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - бесплатно ознакомительный отрывок. Жанр: Детская образовательная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Марат Авдыев - Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей краткое содержание

Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - описание и краткое содержание, автор Марат Авдыев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Могут ли обычные школьники сделать научное открытие? Какой должна быть современная школа? Кого, чему и как учить? – ответы на эти вопросы имеют важное значение. Почти 4 столетия мир бился над решением Теоремы Ферма. Есть доказательство в 140 стр. для Гуру в теории чисел, но его невозможно пересказать. Группа ребят из обычной физматшколы, заключили дерзкое пари с преподавателем о том, что смогут найти никому неизвестное, краткое доказательство Великой Теоремы. Неожиданные препятствия.

Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - читать онлайн бесплатно ознакомительный отрывок

Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Марат Авдыев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

с одной стороны:

центральная симметричность фигуры в виде трёх вложенных гиперкубов, непрерывность следования слоёв, их полное заполнение гиперкубиками

с другой стороны:

объём a-Малого гиперкуба равен объему множества точек между с-Большим и b-Средним гиперкубами.

При n> 2 эти условия являются взаимоисключающими и невыполнимы.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

Легко убедиться на примере любой (обозначается как ∀) Пифагоровой тройки, что последнее условие, в случае такой тройки, выполняется в двумерном пространстве, т.е. для вписанных друг в друга квадратов. Формула теоремы Ферма – это аналог теоремы Пифагора, но в n-мерном пространстве. Если хотя бы Пифагорова тройка в n-мерном пространстве найдется, то Теорема Ферма и его уравнение будут опровергнуты.

– Пока все понятно, кроме слоя , что это такое? – спросил Борщов.

– Строго математически мы вводим определение слоя S как множества точек в n – мерном пространств, полученное в результате разности множеств точек вписанных друг в друга гиперкубов, с общей вершиной, рёбра которых отличаются на единицу, как на экзамене ответил Матвей (см. Рис 2.2.).

– А если не вершины, а центры гиперкубов общие, – указав на шахматную доску, сказала Татьяна, – то рёбра гиперкубов, ограничивающие слой будут отличаться на двойку?

– Абсолютно точно! – кивнул Матвей. – Но мы будем выбирать то или иное множество фигур.

1) множество фигур «начало координат в вершинах» вписанными друг в друга гиперкубов, совмещенных по произвольной вершине

или

2) в «начало координат в центре всех трёх гиперкубов a n, b n, c n».

Обе геометрических фигуры соответствующих каждому из только то заданных множеств точек пространства, преобразуются друг в друга за счет отражений от гиперплоскостей, перпендикулярных каждой из n осей координат либо рассечения фигуры на «гиперквадранты» и масштабирования. Вспомните наши эксперименты с салфеткой! – Матвей схватил со стола сложенную дважды пополам салфетку и продемонстрировал ее всей компании.

– Под термином гиперквадрант понимается, например, подпространство только неотрицательных значений … – Матвей приготовился выдать строгое определение но его перебили.

– Проще говоря это салфетка сложенная на четыре части, а точнее её малый квадратик? – задала наводящий вопрос Татьяна.

– Да

– Ну так и скажи, мы же не на экзамене – назидательно сказала Татьяна.

– Итак, коллеги, для начала неплохо, очень даже неплохо, начала подытоживать встречу Борщов. – давайте опишем какое примерно это должно быть это направление, вернее, где может скрываться доказательство? И Борщов, пригласил широким жестом высказаться каждого.

Оно должно быть очевидным, и на первый взгляд, совершенно невероятным

– задумчиво произнесла Татьяна.

Его можно понять с минимальным количеством формул или совсем без формул

– добавил Матвей.

Все посмотрели на одиннадцатилетнего Артура – собравшись духом, он каким-то официальным тоном сказал:

Такое доказательство должен понимать любой потребитель, категории двенадцать плюс!

– Вот как глубоко в нашу жизнь проник маркетинг! – назидательно шутя заметила Татьяна. А в целом, – продолжала Татьяна: хорошо бы провести опрос среди знакомых и знакомых их знакомых (вот здесь как раз и могут пригодиться социальные сети!), кто сможет пересказать по памяти доказательство Великой теоремы Ферма? За исключением от силы сотни математиков – Гуру в теории чисел и лиц с фотографической памятью, способных точно запомнить полторы сотни страниц текста, этого не сможет сделать никто!

– Именно поэтому поиск Истины и наглядных доказательств нельзя остановить с присуждением Абелевской премии, заметил Борщов.

Итак группа выработала основные правила

встречаться каждую в неделю;

терпеливо перебирать разные варианты, даже немного крейзи , тщательно прорабатывать детали;

«не залезать в дебри»;

искать простое наглядное доказательство, понятное школьнику средних классов школы;

и не посещать Всемирную паутину, соцсети без самой крайней необходимости.

Последнее условие выдвинул Борщов, объясняя это тем, что Всемирная паутина и антисоциальные, как он любил их называть, сети, особенно те, которые выполаскивают мозги , наполняя их приколами и всяким мусором, сильно ограничивают наше творческое воображение. Во-первых, это отрицательный опыт других «лузеров» (Борщов при этом выразительно посмотрел на Артура), которые искомого доказательства не нашли, и наводят на искателей излишние комплексы во-вторых, это постоянные манипуляции сознания и сбивание с толку. Какие-то всезнайки постоянно кричат: это невозможно, это делается лишь так-то и так-то, только у нас о ты, ничтожнейший, получишь шанс со скидкой и так далее… Не даром старина Манфред Шпитцер написал свою скандальную книгу: «Цифровая деменция или антимозг»

[Шпитцер Манфред Антимозг: цифровые технологии и мозг/ Манфред Шnитцер; пер. с немецкого А. Г. Гришина – Москва: АСТ, 2014. – 288 с. ISBN 978-5-17-079721-9].

Ребята приводили аргументы против цифрового «аскетизма», восхваляя работу в группах в коллаборации, плюсы Всемирной паутины, но затем согласились, что не будут читать, смотреть ничего кроме недостающей литературы и переводов на английский язык специальных терминов, на месяц или даже больше заблокируют свои аккаунты в сетях для того, чтобы мобилизоваться к достижению общей цели. Матвей не смог сдержать улыбки вспоминая кличку Борщова – Борщ или профессор кислых щей : когда надо профессор мог быть удивительно занудным и упрямым.

Александр Николаевич молча положил кнопочный мобильник на стол и кивнул на него: дескать, обычной звонилки достаточно, в крайнем случае SMS.

– Словом, звучит все это грандиозно! – прихлопнул в ладоши профессор, и ребята знали: это означает конец диалога и одновременно то, что он доволен встречей.

И тут раздался сигнал бип-бип на часах у Матвея, который вскочил словно ошпаренный кипятком: Ой, у нас начинается День физики в нашей школе, а наш класс отвечает за расстановку приборов для демонстрации экспериментов, у меня осталось уже меньше часа, так что я лечу!

И Матвей оставил дружную компанию единомышленников на самом интересном моменте.

– Ну, уважаемые коллеги, какие ещё у нас остались вопросы? – обращаясь к Татьяне и Артуру подытожил Борщов.

– А почему Вы называете это место Собачьи бутерброды? – совершенно серьёзно спросил Артур.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марат Авдыев читать все книги автора по порядку

Марат Авдыев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей отзывы


Отзывы читателей о книге Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей, автор: Марат Авдыев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x