Лев Генденштейн - Алиса в стране математики
- Название:Алиса в стране математики
- Автор:
- Жанр:
- Издательство:Паритет Лтд
- Год:1994
- Город:Харьков
- ISBN:5-86906-066-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лев Генденштейн - Алиса в стране математики краткое содержание
Книга построена на занимательных сказочных сюжетах с
персонажами всемирно известных сказок Льюиса Кэрролла «Алиса в
Стране Чудес» и «Алиса в Зазеркалье» и призвана пробудить у детей
интерес к математике, развить творческое воображение и логическое
мышление. В книге содержатся также исторические экскурсы,
знакомящие с великими математиками и историей возникновения и
развития математики с древности до наших дней.
Алиса в стране математики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Другой причиной появления дробей была потребность в измерениях . Чтобы делить поле на участки, обменивать зерно и ткани или следить за временем, надо было научиться измерять площадь, объём, длину, время. Однако в результате измерения не всегда получалось натуральное число: часто приходилось учитывать и части меры — половину, четверть, одну шестую и так далее
При измерениях важно сравнивать величины, а для этого основные дроби совсем не подходят: попробуйте, например, сразу сказать, что больше — одна вторая плюс одна двенадцатая или одна треть плюс одна четверть?
Намного удобнее было бы, конечно, использовать при измерениях одни и те же части и указывать, сколько таких частей надо взять: например, сразу ясно, что двадцать три шестидесятых меньше, чем двадцать пять шестидесятых. И можно даже сразу сказать, на сколько меньше — ровно на две шестидесятых! Мы не случайно взяли шестидесятые части: первыми делить на одинаковые доли догадались древние вавилоняне, которые считали не десятками, а «шестидесятками», поэтому и доли у них были шестидесятые. А когда деления на шестьдесят частей было недостаточно, одну шестидесятую часть делили ещё на шестьдесят частей — получались «три тысячи шестисотые» части. Вам это ничего не напоминает? Тогда взгляните на часы: каждый час разделен на шестьдесят минут, а каждая минута — на шестьдесят секунд! Это привет от вавилонян, которых давно уже нет!
Вавилонские дроби оказались очень удобными для научных измерений (особенно в астрономии), и этими дробями европейские учёные пользовались даже в эпоху Возрождения: натуральные числа записывались в десятиричной системе — так же, как мы это делаем сегодня, а дроби всё ещё оставались «шестидесятиричными»! Казалось бы, надо сделать всего один шаг, чтобы перейти от шестидесятых и «три тысячи шестисотых» долей к десятым и сотым долям, но этот шаг оказался почему-то очень трудным: десятичные дроби ввёл арабский математик ал-Каши только в XV веке. Однако и тогда эти дроби до Европы не добрались — их ввёл в употребление голландский учёный Стевин только в конце XVI века!
Меры в старину отличались удивительным разнообразием! Скажем, расстояние между деревнями измерялось иногда в курительных трубках: сколько можно выкурить трубок, идя от одной деревни до другой. А в Англии долгое время использовалась мера длины «ярд» — эта мера была установлена указом короля Генриха I и равнялась расстоянию от кончика носа короля до конца среднего пальца его вытянутой руки. Это была очень удобная мера: для проверки ее правильности достаточно было просто позвать короля и попросить его вытянуть руку!
Сегодня мы пользуемся главным образом десятичными дробями, чаще всего — в виде процентов. Слово «процент» происходит от латинского слова «центум» (сто): один процент — это одна сотая часть.
Об отношении древних греков к дробям стоит сказать особо: здесь, как и во многом другом, греки оказались непохожими на других. Греческие купцы и строители пользовались дробями вовсю — как без дробей торговать и строить? А вот учёные дробей не признавали! Греческий учёный Платон, который жил в IV веке до нашей эры, писал: «Если ты захочешь делить единицу, математики высмеют тебя и не позволят это делать».
Как ни странно, причиной такого удивительного непризнания дробей был именно высокий уровень греческой математики: греки считали математику наукой строгой и точной, а дроби представлялись им чем-то приближенным, неточным, и, значит, недостойным настоящего учёного. Единственное исключение сделали для музыки: когда Пифагор создал первую теорию музыки, он связал основные гармонические интервалы — октаву, квинту и кварту с дробями — одной второй, двумя третями и тремя четвертями.
И только Архимед, который много занимался практическими приложениями математики (например, он строил боевые машины для защиты Сиракуз от римлян), решился нарушить запрет на использование дробей в «чистой» науке. При этом он сразу ввёл в употребление дроби общего вида — такие, как пять девятых или двадцать две седьмых, то есть любое число любых долей.
Через шестьсот лет после Архимеда другой греческий математик, Диофант, впервые стал рассматривать дроби как числа , а не как доли какого-то предмета или меры. Однако и после Диофанта прошло ещё больше тысячи лет, прежде чем учёные начали изучать дробные числа «сами по себе».
Так произошло первое увеличение «семьи чисел»: к натуральным числам присоединились дробные. С тех пор продолжают появляться всё новые и новые числа и, пока на свете существуют математики, конца новым числам не будет!
НЕБЫЛИЦА О САДЕ В ДРЕВНЕЙ ГРЕЦИИ, КОТОРЫЙ НАЗЫВАЛСЯ АКАДЕМИЕЙ
В Древней Греции когда-то
Был довольно странный сад:
Почему-то не пускали
В этот странный сад ребят!
Там, гуляя по аллеям,
Мудрецами окружён,
Рассуждал о мирозданьи
Их учитель, сам Платон.
Больше двух тысячелетий
С той поры прошло, и вот
Академий стало много —
Им давно утерян счёт.
Но, как прежде, не пускают
В академии детей,
Потому там не бывает
Неожиданных затей,
Ни в одной из академий
Нет весёлых сорванцов,
Ну а в некоторых даже...
Не увидишь мудрецов.
КОРОЛЕВСКАЯ ПРОГУЛКА
— А если бы я не собрала Шалтая-Болтая? — спросила Алиса, когда они с Белым Королём пошли по дороге для королевских прогулок. — Ведь я не смогла бы дать вам торт: у меня ничего нет!
— Ну что ж, — пожал плечами Король, — значит, у тебя стало бы тогда ещё меньше, чем ничего!
— Но разве бывает меньше, чем ничего ? — удивилась Алиса.
— Конечно, бывает, — сказал Король. — Например, если ты кому-то должна, у тебя ведь меньше чем ничего, правда?
— Правда, — согласилась Алиса.
— Вот ты и была бы должна мне один торт. Можно сказать, — добавил Король, — что у тебя тогда стал бы минус один торт.
— Минус один? — переспросила Алиса.
— Это число, которое на единицу меньше нуля, — пояснил Король.
— Но разве бывают числа меньше нуля? — ещё больше удивилась Алиса.
— Сколько угодно, — охотно отозвался Король. — Берёшь любое число, большее нуля, скажем, пять, отнимаешь его от нуля — и, пожалуйста — получаешь «минус пять», число, которое на пять меньше нуля! У таких чисел и название есть — отрицательные числа.
Читать дальшеИнтервал:
Закладка: