Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

Тут можно читать онлайн Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая околокомпьтерная литература, издательство Манн, Иванов и Фербер, год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим краткое содержание

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим - описание и краткое содержание, автор Виктор Майер-Шенбергер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
С появлением новой науки открылась удивительная возможность с точностью предсказывать, что произойдет в будущем в самых разных областях жизни. Большие данные — это наша растущая способность обрабатывать огромные массивы информации, мгновенно их анализировать и получать порой совершенно неожиданные выводы. По какому цвету покраски можно судить, что подержанный автомобиль находится в отличном состоянии? Как чиновники Нью-Йорка определяют наиболее опасные люки, прежде чем они взорвутся? И как с помощью поисковой системы Google удалось предсказать распространение вспышки гриппа H1N1? Ключ к ответу на эти и многие другие вопросы лежит в больших данных, которые в ближайшие годы в корне изменят наше представление о бизнесе, здоровье, политике, образовании и инновациях.

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим - читать онлайн бесплатно полную версию (весь текст целиком)

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим - читать книгу онлайн бесплатно, автор Виктор Майер-Шенбергер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ввиду прогнозов больших данных возникает сильное искушение изолировать людей, которые, судя по прогнозам, склонны к совершению преступлений, и во имя снижения риска регулярно подвергать их тщательным проверкам, даже если они чувствуют (не без оснований), что наказаны без суда и следствия. Предположим, такой алгоритм «охраны правопорядка», основанный на прогнозах, определил, что конкретный подросток в высшей степени склонен к совершению тяжкого преступления в ближайшие пять лет. В итоге по решению властей социальный работник будет ежемесячно наведываться к подростку, чтобы контролировать его и попытаться ему помочь.

Если подросток и его родственники, друзья, учителя или работодатели воспринимают эти визиты как клеймо (что вполне вероятно), то это вмешательство можно оценить как наказание — по сути, штраф за действия, которые никто не совершал. Впрочем, немногим лучше ситуация, если визиты рассматриваются не как наказание, а как простая попытка уменьшить вероятность криминальных событий — так сказать, способ минимизации рисков (в данном случае сводится к минимуму риск совершения преступления, которое подрывает общественную безопасность). Чем чаще привлечение людей к ответственности за свои действия заменяется мероприятиями по снижению рисков, тем больше в обществе снижается ценность идеала индивидуальной ответственности. Государство, основанное на прогнозах, — в первую очередь государство-нянька. Отрицание ответственности человека за свои действия разрушает фундаментальную свободу людей выбирать свое поведение.

Если большинство решений на государственном уровне полагаются на прогнозы и желание снизить риски, наш личный выбор, а значит, и наша личная свобода действий больше не имеют значения. Где нет вины, там нет невиновности. Уступая такому подходу, мы не улучшаем, а скорее обедняем мир.

Основным стержнем управления большими данными является гарантия того, что мы продолжим судить других, принимая во внимание их индивидуальную ответственность, а не «объективно» обрабатывая числа, чтобы определить, являются ли те или иные лица преступниками. Только в таком случае мы будем относиться к ним по-человечески — как к людям, которые имеют свободу выбора своих действий и право быть судимыми за них. Это не что иное, как последствие наступления эпохи больших данных для нынешней презумпции невиновности.

Вскрытие «черного ящика»

Современные компьютерные системы принимают решения на основе явно запрограммированных правил, которым они должны следовать. Таким образом, если что-то пошло не так, а это неизбежно случается, мы можем вернуться и выяснить, почему компьютер принял то или иное решение. («Почему система автопилота подняла самолет на пять градусов выше, когда внешний датчик определил внезапное повышение влажности?») Сегодня компьютерный код можно открыть и проверить, а основания для решений системы независимо от их сложности — сделать понятными хотя бы для тех, кто разбирается в коде.

При использовании анализа больших данных отследить это станет гораздо сложнее. Основа прогнозов алгоритма зачастую может быть непосильной для человеческого понимания.

Когда компьютеры были явно запрограммированы следовать набору инструкций, как это было с одной из первых программ компании IBM для перевода с русского на английский (1954 год), человеку было легко понять, почему одно слово заменялось другим. Когда компания Google объединяет миллиарды страниц переводов, чтобы судить о том, почему английское слово light выводится на французском как lumière, а не léger (имеется в виду яркость, а не отсутствие тяжести), невозможно точно объяснить причину выбора: основа прогнозирования влечет за собой огромные объемы данных и обширные статистические вычисления.

Масштабы работы с большими данными выйдут далеко за рамки привычного для нас понимания. Так, корреляция, определенная компанией Google между несколькими условиями поиска и гриппом, стала результатом проверки 450 миллионов математических моделей. С другой стороны, Синтия Рудин первоначально разработала 106 прогностических факторов того, что канализационный люк может загореться, и сумела объяснить менеджерам компании Con Edison, почему ее программа выстроила места проверки именно в таком приоритетном порядке. «Объясняемость», как говорят в кругах исследования искусственного интеллекта, имеет большое значение для нас, смертных, которые, как правило, хотят знать не только факты, но и их причину. А что если бы вместо 106 прогностических факторов система автоматически создала 601, подавляющее большинство из которых имеют очень низкий вес, но вместе взятые повышают точность модели? Основа для любого прогноза была бы невообразимо сложной. Что тогда Синтия сказала бы руководителям, чтобы убедить их перераспределить свой скудный бюджет?

В таких случаях мы видим риск того, что прогнозы больших данных, а также алгоритмы и наборы данных, стоящие за ними, станут «черными ящиками», которые не дают ни малейшей прозрачности, подотчетности, прослеживаемости или уверенности. Для того чтобы предотвратить это, необходимы отслеживание и прозрачность больших данных, а также новые виды специальных знаний и учреждения, которые бы ими занимались. Эти новые игроки окажут поддержку в многочисленных областях, где общество должно внимательно изучить прогнозы и дать возможность пострадавшим требовать возмещения.

В обществе такое происходило и раньше, когда при резком увеличении сложности и специализации определенной области возникала острая необходимость в специалистах для управления новыми техническими средствами. Профессии, связанные с юриспруденцией, медициной, бухгалтерским учетом и инженерией, подверглись таким преобразованиям более ста лет назад. Не так давно появились консультанты по компьютерной безопасности и конфиденциальности. Они следят за тем, чтобы деятельность компании соответствовала передовой практике, определяемой такими органами, как Международная организация по стандартизации (созданная ввиду возникшей необходимости в разработке правил в этой области).

В эпоху больших данных потребуются люди, которые взяли бы на себя эту роль. Назовем их алгоритмистами. Они могли бы выступать как представители независимых органов, которые работают вне организаций, и как специалисты самих организаций, аналогично тому как компании нанимают и штатных бухгалтеров, и внешних аудиторов, которые проверяют их работу.

Новая профессия — алгоритмист

Новые профессионалы должны быть специалистами в области компьютерных наук, математики и статистики. Выступали бы они в качестве инстанций, контролирующих анализ и прогнозы больших данных. Алгоритмисты давали бы клятву в беспристрастности и конфиденциальности, как это делают бухгалтеры и другие специалисты в наше время. Они могли бы оценивать выбор источников данных, аналитических средств и средств прогнозирования (в том числе алгоритмов и моделей), а также интерпретацию результатов. В случае возникновения спора алгоритмисты получали бы доступ к соответствующим алгоритмам, статистическим подходам и наборам данных, которые подготовили данное решение.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Виктор Майер-Шенбергер читать все книги автора по порядку

Виктор Майер-Шенбергер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим отзывы


Отзывы читателей о книге Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим, автор: Виктор Майер-Шенбергер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x