Марк Руссинович - 1.Внутреннее устройство Windows (гл. 1-4)

Тут можно читать онлайн Марк Руссинович - 1.Внутреннее устройство Windows (гл. 1-4) - бесплатно ознакомительный отрывок. Жанр: Прочая околокомпьтерная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Марк Руссинович - 1.Внутреннее устройство Windows (гл. 1-4) краткое содержание

1.Внутреннее устройство Windows (гл. 1-4) - описание и краткое содержание, автор Марк Руссинович, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга посвящена внутреннему устройству и алгоритмам работы основных компонентов операционной системы Microsoft Windows — Windows Server 2003, Windows XP и Windows 2000 — и файловой системы NTFS. Детально рассмотрены системные механизмы: диспетчеризация ловушек и прерываний, DPC, APC, LPC, RPC, синхронизация, системные рабочие потоки, глобальные флаги и др. Также описываются все этапы загрузки операционной системы и завершения ее работы. B четвертом издании книги больше внимания уделяется глубокому анализу и устранению проблем, из-за которых происходит крах операционной системы или из-за которых ее не удается загрузить. Кроме того, рассматриваются детали реализации поддержки аппаратных платформ AMD x64 и Intel IA64. Книга состоит из 14 глав, словаря терминов и предметного указателя. Книга предназначена системным администраторам, разработчикам серьезных приложений и всем, кто хочет понять, как устроена операционная система Windows.

Названия всех команд, диалоговых окон и других интерфейсных элементов операционной системы приведены как на английском языке, так и на русском.

Версия Fb2 редакции — 1.5. Об ошибках просьба сообщать по адресу — general2008@ukr.net.

1.Внутреннее устройство Windows (гл. 1-4) - читать онлайн бесплатно ознакомительный отрывок

1.Внутреннее устройство Windows (гл. 1-4) - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Марк Руссинович
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Заметьте что счетчик конкурирующих потоков contention count извлекаемый из - фото 130

Заметьте, что счетчик конкурирующих потоков (contention count), извлекаемый из структуры ресурса, фиксирует, сколько раз потоки пытались захватить данный ресурс и были вынуждены переходить в состояние ожидания из-за того, что он уже занят.

Для изучения деталей конкретного объекта ресурса (в частности, кто владеет ресурсом и кто ждет его освобождения) укажите ключ — v и адрес ресурса:

lkd›!locks — v 0x805439a0

Блокировки с заталкиванием указателя Блокировки с заталкиванием указателя - фото 131
Блокировки с заталкиванием указателя

Блокировки с заталкиванием указателя (push locks), впервые появившиеся в Windows XP, являются еще одним оптимизированным механизмом синхронизации, который основан на объекте «событие» (в Windows Server 2003 такие блокировки базируются на внутреннем синхронизирующем объекте KGATE) и подобно быстрым мьютексам заставляет ждать этот объект только при наличии конкуренции. Такие блокировки имеют преимущества над быстрыми мьютексами, так как их можно захватывать как в разделяемом, так и в монопольном режиме. Они не документированы и не экспортируются ядром, так как зарезервированы для использования самой операционной системой.

Существует два типа блокировок с заталкиванием указателя: обычный и с поддержкой кэша (cache aware). Первый тип занимает в памяти тот же объем, что и указатель (4 байта в 32-разрядных системах и 8 байтов в 64-разрядных). Когда поток захватывает обычную блокировку с заталкиванием указателя, код этой блокировки помечает ее как занятую, если она на данный момент свободна. Если блокировка захвачена для монопольного доступа или если потоку нужно захватить ее монопольно, а она уже захвачена для разделяемого доступа, ее код создает в стеке потока блок ожидания, инициализирует объект «событие» в этом блоке и добавляет последний в список ожидания, сопоставленный с блокировкой. Как только блокировка освобождается, ее код пробуждает ждущий поток (если таковой имеется), освобождая событие в блоке ожидания потока.

Второй тип создает обычную блокировку с заталкиванием указателя для каждого процессора в системе и сопоставляет ее с блокировкой с заталкиванием указателя, поддерживающей кэш. Когда потоку нужно захватить такую блокировку, он просто захватывает обычную блокировку, созданную для текущего процессора в соответствующем режиме доступа.

Подобные блокировки используются, в том числе, диспетчером объектов, когда возникает необходимость в защите глобальных структур данных и дескрипторов защиты объектов, а также диспетчером памяти для защиты структур данных AWE.

Обнаружение взаимоблокировки с помощью Driver Verifier

Взаимоблокировка (deadlock) — это проблема синхронизации, возникающая, когда два потока или процессора удерживают ресурсы, нужные другому, и ни один из них не отдает их. Такая ситуация может приводить к зависанию системы или процесса. Утилита Driver Verifier, описываемая в главах 7 и 9, позволяет проверять возможность взаимоблокировки, в том числе на спин-блокировках, быстрых и обычных мьютексах. O том, как пользоваться Driver Verifier для анализа зависания системы, см. главу 14.

Системные рабочие потоки

При инициализации Windows создает несколько потоков в процессе System, которые называются системными рабочими потоками (system worker threads). Они предназначены исключительно для выполнения работы по поручению других потоков. Bo многих случаях потоки, выполняемые на уровне «DPC/dispatch», нуждаются в вызове таких функций, которые могут быть вызваны только при более низком IRQL. Например, DPC-процедуре, выполняемой в контексте произвольного потока при IRQL уровня «DPC/dispatch» (DPC может узурпировать любой поток в системе), нужно обратиться к пулу подкачиваемой памяти или ждать на объекте диспетчера для синхронизации с потоком какого-либо приложения. Поскольку DPC-процедура не может понизить IRQL, она должна передать свою задачу потоку, который сможет выполнить ее при IRQL ниже уровня «DPC/dispatch».

Некоторые драйверы устройств и компоненты исполнительной системы создают собственные потоки для обработки данных на уровне «passive», но большинство вместо этого использует системные рабочие потоки, что помогает избежать слишком частого переключения потоков и чрезмерной нагрузки на память из-за диспетчеризации дополнительных потоков. Драйвер устройства или компонент исполнительной системы запрашивает сервисы системных рабочих потоков через функцию исполнительной системы ExQueueWorkItem или IoQueueWorkItem. Эти функции помещают рабочий элемент (work item) в специальную очередь, проверяемую системными рабочими потоками (см. раздел «Порты завершения ввода-вывода» главы 9).

Рабочий элемент включает указатель на процедуру и параметр, передаваемый потоком этой процедуре при обработке рабочего элемента. Процедура реализуется драйвером устройства или компонентом исполнительной системы, выполняемым на уровне «passive».

Например, DPC-процедура, которая должна ждать на объекте диспетчера, может инициализировать рабочий элемент, который указывает на процедуру в драйвере, ждущем на объекте диспетчера, и, возможно, на указатель на объект. Ha каком-то этапе системный рабочий поток извлекает из своей очереди рабочий элемент и выполняет процедуру драйвера. После ее выполнения системный рабочий поток проверяет, нет ли еще рабочих элементов, подлежащих обработке. Если нет, системный рабочий поток блокируется, пока в очередь не будет помещен новый рабочий элемент. Выполнение DPC-процедуры может и не закончиться в ходе обработки ее рабочего элемента системным рабочим потоком. (B однопроцессорной системе выполнение этой процедуры всегда завершается до обработки ее рабочего элемента, так как на уровне IRQL «DPC/dispatch» потоки не планируются.)

Существует три типа системных рабочих потоков:

отложенные (delayed worker threads) — выполняются с приоритетом 12, обрабатывают некритичные по времени рабочие элементы и допускают выгрузку своего стека в страничный файл на время ожидания рабочих элементов;

критичные (critical worker threads) — выполняются с приоритетом 13, обрабатывают критичные по времени рабочие элементы. B Windows Server их стек всегда находится только в физической памяти;

гиперкритичный (hypercritical worker thread) — единственный поток, выполняемый с приоритетом 15. Его стек тоже всегда находится в памяти. Диспетчер процессов использует гиперкритичные по времени рабочие элементы для выполнения функции, освобождающей завершенные потоки.

Число отложенных и критичных системных рабочих потоков, создаваемых функцией исполнительной системы ExpWorkerInitialization, которая вызывается на ранних стадиях процесса загрузки, зависит от объема памяти в системе и от того, является ли система сервером. B таблице 3-11 показано количество потоков, изначально создаваемых в системах с различной конфигурацией. Вы можете указать ExpInitializeWorker создать дополнительно до 16 отложенных и 16 критичных системных рабочих потоков. Для этого используйте параметры AdditionalDelayedWorkerThreads и AdditionalCri-ticalWorkerThreads в разделе реестра HKLM\SYSTEM\CurrentControlSet\Cont-rol\ Session Manager\Executive.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марк Руссинович читать все книги автора по порядку

Марк Руссинович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




1.Внутреннее устройство Windows (гл. 1-4) отзывы


Отзывы читателей о книге 1.Внутреннее устройство Windows (гл. 1-4), автор: Марк Руссинович. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x