Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Тут можно читать онлайн Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] - бесплатно ознакомительный отрывок. Жанр: comp-db, издательство Издательство Питер, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Роман с Data Science. Как монетизировать большие данные [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Издательство Питер
  • Год:
    2021
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-4461-1879-3
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] краткое содержание

Роман с Data Science. Как монетизировать большие данные [litres] - описание и краткое содержание, автор Роман Зыков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] - читать онлайн бесплатно ознакомительный отрывок

Роман с Data Science. Как монетизировать большие данные [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Роман Зыков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Большой объем данных на самом деле получить очень несложно. Дам простой пример. Если каждую миллисекунду сохранять вашу геопозицию, например GPS координаты, то за сутки мы получим: 1000 миллисекунд в секунде × 60 секунд × 60 минут × 24 часа = 86 400 000 событий. Цифра очень впечатляет, особенно если масштабировать ее на всех людей на Земле. Более подробно о больших данных я расскажу в главе про хранилища данных.

Связность данных

Одна из важнейших характеристик данных – возможность связать разные источники данных. Например, если удается связать затраты на интернет-рекламу и продажи через нее, то вы получаете инструмент эффективности. Далее добавляем данные по реально доставленным заказам, так как в некоторых e-commerce-бизнесах процент отказов очень высок. И на выходе мы получаем эффективность с поправкой на отказы. Фантазируем дальше, добавляем к данным категории товаров – получаем возможность видеть эффективность рекламы в разрезе категорий товаров. Продолжать можно до бесконечности. Кстати, именно этот пример иллюстрирует то, что называется «сквозной аналитикой».

Вышеприведенный пример показывает, что, добавляя новый источник данных, мы можем улучшить точность и увеличить число «степеней свободы», что можно делать с самими данными. Лично для меня это увеличивает ценность данных на порядок. Вот только есть одна заминка с тем, как эти данные связать. Для этого нужен «ключ», который должен быть в обоих источниках, и этот ключ не всегда бывает настолько точным, насколько требуется нам. Поясню на примере. Чтобы идеально связать затраты на интернет-рекламу и покупки, нужен ключ – id пользователя. Но проблема в том, что, скорее всего, от рекламных систем вы не получите информации о том, сколько вы потратили денег на конкретного пользователя. Из-за этого приходится использовать набор ключей из ссылок, которые однозначно характеризуют рекламное объявление. Точность из-за этого страдает, но это реальная жизнь данных – лучше получить что-то, чем ничего.

Много данных не бывает

Эту фразу я повторял, когда работал в Ostrovok.ru. Я точно не помню, с чем она была связана, возможно, требовалось расширить парк серверов. Считаю, что в эпоху облачных вычислений, дешевого хранения данных и хороших алгоритмов их сжатия нужно сохранять максимально много и подробно. Поверьте, когда понадобится найти ответ на какой-то вопрос и вы будете понимать, что данных нет, а могли бы быть, будет очень обидно. Рано или поздно собирать их все равно придется, почему бы не начать прямо сейчас?

ВАЖНО!Здесь хочу поднять одну проблему: в какой бы компании я ни работал – везде разработчики игнорируют аналитиков. При разработке какого-либо функционала или продукта анализ его функциональности через данные ставится на последнее место. В лучшем случае будет сделан сбор простейших метрик по усмотрению разработчика. Дальнейший сценарий такой – менеджеры проекта или продукта, владельцы бизнеса начинают активно интересоваться его судьбой. Что там с цифрами? Бегут к аналитикам, просят нарыть хоть что-нибудь. А что может сделать аналитик, если данных для статистических тестов не хватает и точность страдает? Только высосать информацию из пальца. С таким положением вещей я лично сталкивался десятки раз, а случаи, когда все было сделано как надо, могу по пальцам пересчитать.

Я предлагаю активно бороться с этим. Разработку можно понять – им нужно как можно быстрее выкатить новую «фичу» с очень хорошим качеством. Анализ метрик их не волнует, это лишние строчки кода, это работа аналитиков. Что делать? Это сфера ответственности менеджера проекта/продукта, лица, от имени которого ставится задача разработке. Необходимо в процессе постановки подобных задач предусмотреть «визу» от аналитиков. Что в нее входит:

1. Отправка технического задания и примерного списка вопросов к эффективности новой разработки аналитикам.

2. Аналитики со своей стороны отдают вам список метрик, а также встречное техническое задание для логирования (сбора метрик) данных проекта: что собирать и в каком формате.

Этот процесс не так прост, как кажется. Часто приходится в итеративном формате договариваться обо всех нюансах и ограничениях, в том числе с разработчиками. Происходит своеобразный торг, но он стоит того. Заранее хорошо продуманный результат не будет идеальным на 100 %, но если менеджмент получит ответы на 80 % своих вопросов в течение нескольких дней с момента запуска «фичи» – это успех. Ничто не играет против нас так, как время! И лучше его потратить до запуска, а не после, теряя деньги на неэффективном продукте.

Доступ к данным

Теперь коснемся доступа к данным внутри компании. Кто может получить его?

Отвлечемся на компанию Netflix, один из крупнейших поставщиков сериалов (мой любимый – «Карточный домик»). У компании очень интересная корпоративная культура [32]. Один из ее принципов звучит так: «Share information openly, broadly, and deliberately» (обмениваемся информацией открыто, широко и сознательно).

У этого правила, правда, есть строгое исключение: они нетерпимо относятся к торговле инсайдерской информацией, а также платежной информацией клиентов, доступ к которой ограничен. Как этот принцип можно применить на практике? Не ограничивать своим сотрудникам доступ к информации, но ограничить доступ к персональным данным клиентов. Я иду обычно еще дальше, стараюсь максимально убрать барьер между сотрудниками-неаналитиками и данными. Просто я считаю, что должна быть не только свобода доступа к данным, но и минимум посредников между «спрашивающим» и данными. Это важно, потому что против нас играет время. Часто сами запросы данных выглядят довольно простыми, их можно сделать самостоятельно. «Дайте мне выгрузку таких-то данных» – не аналитическая задача: менеджер знает, что ему конкретно нужно, пусть сам получит это через несложный интерфейс. Для этого нужно обучить команду самостоятельно работать с данными. Посредник только создаст задержку, но если кто-то не хочет или не может действовать самостоятельно, пусть использует посредников. Этим вы убьете сразу двух зайцев – ваши аналитики не будут демотивированы примитивным скучным трудом по выгрузке данных, а ваши менеджеры смогут получать данные почти мгновенно, и значит, не будут терять драйв.

Конечно, все персональные данные клиентов должны быть обезличены. Это можно сделать, шифруя их личную информацию. Полностью лучше ее не удалять, тогда можно будет решать часть вопросов клиентской поддержки с помощью вашей системы анализа данных.

Я всегда стараюсь использовать этот подход во всех компаниях, где бы ни работал. Вы даже не представляете, насколько будут вам благодарны пользователи ваших аналитических систем, когда смогут получать данные самостоятельно. Самые умные и деятельные сотрудники являются самыми активными потребителями информации для принятия решений, и создавать им препятствия – это преступление.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роман Зыков читать все книги автора по порядку

Роман Зыков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Роман с Data Science. Как монетизировать большие данные [litres] отзывы


Отзывы читателей о книге Роман с Data Science. Как монетизировать большие данные [litres], автор: Роман Зыков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x