Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Тут можно читать онлайн Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] - бесплатно ознакомительный отрывок. Жанр: comp-db, издательство Издательство Питер, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Роман с Data Science. Как монетизировать большие данные [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Издательство Питер
  • Год:
    2021
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-4461-1879-3
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] краткое содержание

Роман с Data Science. Как монетизировать большие данные [litres] - описание и краткое содержание, автор Роман Зыков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] - читать онлайн бесплатно ознакомительный отрывок

Роман с Data Science. Как монетизировать большие данные [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Роман Зыков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Year,Make,Model,Description,Price

1997,Ford,E350,"ac, abs, moon",3000.00

1999,Chevy,"Venture ""Extended Edition""","",4900.00

1999,Chevy,"Venture ""Extended Edition, Very Large""",5000.00

1996,Jeep,Grand Cherokee,"MUST SELL! air, moon roof, loaded",4799.00

JSON – формат гораздо более сложный, он является стандартом де-факто для обмена данными в интернете между сервисами. Главная его особенность в том, что там каждая ячейка имеет наименование. Это и плюс, и минус. Плюс – можно размещать сложные структуры, иерархии, очень удобно парсить, легко открыть в текстовом редакторе или браузере. Главный минус JSON – много лишней информации, в то время как в табличных данных именованы столбцы и нет смысла писать названия для каждого значения в таблице, что сильно увеличивает объем файла.

{

"firstName": "Иван",

"lastName": "Иванов",

"address": {

"streetAddress": "Московское ш., 101, кв.101",

"city": "Ленинград",

"postalCode": 101101

},

"phoneNumbers": [5-

"812 123-1234",

"916 123-4567"

]

}

XML-формат менее распространен, чем JSON, в нем любят хранить конфигурации параметров каких-либо систем. Этот формат – конкурент JSON. Для данных я бы все-таки предпочел JSON, он легче и проще. В XML-формате, например, интернет магазины передают информацию о товарах: структуру их каталога, цены, названия, атрибуты товаров.

Иван

Иванов

Московское ш., 101, кв.101

Ленинград

101101

812 123-1234

916 123-4567

Есть гораздо более экзотические форматы, с которыми вы можете столкнуться на практике:

• pkl – бинарные объекты Python, прочитав которые с помощью этого языка программирования вы получите в памяти сразу нужную структуру данных, не заморачиваясь с парсингом.

• hdf – иерархический формат структуры данных. В этот формат можно поместить разнородные данные, например товарный каталог магазина, продажи и т. д. В файле содержится метаинформация: названия, типы данных и т. д. Лично я с такими файлами никогда не работал, но они могут быть удобны, когда нужно передать данные сложного проекта другой команде или опубликовать в интернете.

• parquet, avro – это уже форматы, заточенные для больших данных. Как правило, они содержат схему данных (метаинформацию) о типе и названии полей и оптимизированы для использования в таких системах, как Hadoop. Оба формата – примеры бинарного хранения данных, хотя avro может опираться на JSON.

Что еще полезно знать о файлах хранения? Как они хранят метаинформацию. Если кто-то захочет передать файл с данными, то, скорее всего, в CSV-файле в первой строке будут названия полей, но информацию о типе (это число, текст, дата и т. д.) вы не получите, нужно будет дополнительно передать описание полей с файлом, иначе вам придется самим строить предположения. Если же вам передадут JSON или XML, то там уже лучше с типами данных, в этом плане они удобнее.

Базы данных обсудим в главе про хранилища.

Способы получения данных

Есть три основных способа получить данные:

• прочитать файлы (обсуждали выше);

• сделать запрос к API;

• сделать запрос к базе данных.

Прочитать файл – это самый простой способ: если это CSV-файл, его можно открыть в Microsoft Excel, Google Spreadsheet, OpenOffice и т. д. Все пакеты анализа данных, библиотеки любых языков программирования поддерживают данный формат. Он очень прост и удобен. С JSON и XML придется повозиться и, скорее всего, даже написать небольшой код (маленькая программа) по извлечению нужных вам данных.

Второй способ – сделать запрос к сетевому API (Application Programming Interface). Вы пишете запрос в требуемом API формате, на выходе вам приходит, как правило, JSON, который вы можете обработать, сохранить в файл и т. д. Это требует кодирования, зато работать с такими интерфейсами бывает очень интересно.

Третий способ – базы данных через использование языка программирования SQL. Для разных систем баз данных существуют свои диалекты этого языка. Обычно это связано с оптимизациями и расширением стандартного языка. Чтобы получить данные из БД, необходимо к ней подключиться через драйвер API по сети, написать запрос SQL, и если все хорошо – получить данные на выходе. В какой бы компании я ни работал – везде писал на SQL. Настоятельно рекомендую ознакомиться с этим языком программирования или хотя бы с его азами.

Глава 6

Хранилища данных

Зачем нужны хранилища данных Хранилище данных содержит копию всех данных - фото 18

Зачем нужны хранилища данных

Хранилище данных содержит копию всех данных, необходимых для функционирования аналитической системы. Несколько лет назад появился модный термин Data Lakes (озеро данных) – это метод хранения данных системой или репозиторием в натуральном виде, то есть в формате, который предполагает одновременное хранение данных в различных схемах и форматах. Данные хранятся в том виде, в котором созданы: видеофайлы, изображения, документы, дампы таблиц из баз данных, CSV-файлы. Мое определение хранилища, которое я дал выше, очень сильно пересекается с озером данных. Также на кластере мы держали скачанные картинки, сырые и обработанные данные. Читателям я предлагаю меньше фокусироваться на терминах и не заморачиваться с ними, никто не даст вам четких инструкций, как хранить ваши данные. Это будет ваше решение, оно будет зависеть от ваших задач, которые предстоит решать именно вам.

Сейчас у хранилища данных гораздо больше функций, чем просто хранение данных для отчетов, – например, оно может выступать источником данных для обучения ML-моделей. Данные можно хранить не только в базе данных, но и в виде файлов, как делает Hadoop.

С моей точки зрения, хранилища данных:

1) являются цифровым архивом компании;

2) являются копией данных в источнике;

3) не изменяемы;

4) хранятся в виде, максимально приближенном к данным в источнике;

5) позволяют объединят данные из разных источников.

Относитесь к хранилищу как к архиву компании [34], ведь там хранятся данные с момента ее создания. Часть данных вы уже нигде не найдете, так как источники периодически чистятся. В Retail Rocket, например, мы периодически архивируем все данные: товарные базы интернет-магазинов (они изменяются со временем), их структуры каталога, сами рекомендации. Ни в каких источниках их уже нет, но они есть в нашем хранилище и помогают решать важные задачи: искать причины проблем и моделировать новые алгоритмы рекомендаций.

Напрямую с источником данных не стоит работать по двум основным причинам. Во-первых, запросы к данным на чтение оказывают очень большую нагрузку на диски и увеличивают время ответа рабочих машин, и клиенты получают ответы ваших систем с задержкой. Во-вторых, может быть нарушена конфиденциальность данных, хранящихся в источниках. Не все данные нужно забирать оттуда в исходном виде, чувствительную информацию клиентов лучше не трогать или шифровать при загрузке в хранилище. Само хранилище проводит незримую границу между вашей рабочей системой, которая должна работать надежно, и данными, которые будут использованы для анализа. В Ozon.ru у меня был один раз случай, когда мой сотрудник, обращаясь напрямую к источнику данных, повредил данные клиента – разработчики тогда очень разозлились.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роман Зыков читать все книги автора по порядку

Роман Зыков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Роман с Data Science. Как монетизировать большие данные [litres] отзывы


Отзывы читателей о книге Роман с Data Science. Как монетизировать большие данные [litres], автор: Роман Зыков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x