Коллектив Авторов - Базы данных: конспект лекций

Тут можно читать онлайн Коллектив Авторов - Базы данных: конспект лекций - бесплатно ознакомительный отрывок. Жанр: comp-db, издательство Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Базы данных: конспект лекций
  • Автор:
  • Жанр:
  • Издательство:
    Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e
  • Год:
    2007
  • Город:
    Москва
  • ISBN:
    978-5-699-23778-4
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив Авторов - Базы данных: конспект лекций краткое содержание

Базы данных: конспект лекций - описание и краткое содержание, автор Коллектив Авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профессионального образования РФ и предназначен для освоения студентами вузов специальной дисциплины «Базы данных».

Лаконичное и четкое изложение материала, продуманный отбор необходимых тем позволяют быстро и качественно подготовиться к семинарам, зачетам и экзаменам по данному предмету.

Базы данных: конспект лекций - читать онлайн бесплатно ознакомительный отрывок

Базы данных: конспект лекций - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив Авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

rr 2= rr 1.

Свойство коммутативности выполняется для всех операций, кроме операции разности. Это легко понять, ведь от перестановки отношений местами их состав (кортежи) не меняется. А при применении операции разности важно, какое из отношений-операндов стоит на первом месте, потому что от этого зависит, кортежи какого отношения примутся за эталонные, т. е. с какими кортежами будут сравниваться другие кортежи на предмет исключения.

4. Свойство ассоциативности:

1) для операции объединения:

( r 1∪ r 2) ∪ r 3= r 1∪( r 2∪ r 3) ;

2) для операции пересечения:

( r 1∩ r 2) ∩ r 3= r 1∩ ( r 2∩ r 3);

3) для операции разности:

( r 1\ r 2) \ r 3≠ r 1\ ( r 2\ r 3);

4) для операции декартового произведения:

( rr 2) × r 3= r 1× ( rr 3);

5) для операции естественного соединения:

( rr 2) × r 3= r 1× ( rr 3).

И снова мы видим, что свойство выполняется для всех операций, кроме операции разности. Объясняется это таким же образом, как и в случае применения свойства коммутативности. По большому счету, операциям объединения, пересечения, разности и естественного соединения все равно в каком порядке стоят отношения-операнды. Но при «отнимании» отношений друг от друга порядок играет главенствующую роль.

На основании вышеприведенных свойств и рассуждений можно сделать следующий вывод: три последних свойства, а именно свойство идемпотентности, коммутативности и ассоциативности, верны для всех рассмотренных нами операций, кроме операции разности двух отношений, для которой не выполнилось вообще ни одно из трех означенных свойств, и только в одном случае свойство оказалось неприменимым.

4. Варианты операций соединения

Используя как основу рассмотренные ранее унарные операции выборки, проекции, переименования и бинарные операции объединения, пересечения, разности, декартова произведения и естественного соединения (все они в общем случае называются операциями соединения), мы можем ввести новые операции, выведенные с помощью перечисленных понятий и определений. Подобная деятельность называется составлением вариантов операций соединения.

Первым таким вариантом операций соединения является операция внутреннего соединенияпо заданному условию соединения.

Операция внутреннего соединения по какому-то определенному условию определяется как производная операция от операций декартового произведения и выборки.

Запишем формульное определение этой операции:

r 1( S 1) × P r 2( S 2) = σ < P > ( rr 2), S 1∩ S 2= ∅;

Здесь P = P < S 1∪ S 2> – условие, накладываемое на объединение двух схем исходных отношений-операндов. Именно по этому условию и происходит отбор кортежей из отношений rr 2в результирующее отношение.

Следует отметить, что операция внутреннего соединения может применяться к отношениям с разными схемами отношений. Эти схемы могут быть любыми, но они ни в коем случае не должны пересекаться.

Кортежи исходных отношений-операндов, попавшие в результат операции внутреннего соединения, называются соединимыми кортежами.

Для наглядного иллюстрирования работы операции внутреннего соединения, приведем следующий пример.

Пусть нам даны два отношения r 1( S 1) и r 2( S 2) с различными схемами отношения:

r 1( S 1):

r 2 S 2 Следующая таблица даст результат применения операции - фото 40

r 2( S 2):

Следующая таблица даст результат применения операции внутреннего соединения по - фото 41

Следующая таблица даст результат применения операции внутреннего соединения по условию P = (b1 = b2).

r 1( S 1) × P r 2( S 2):

Итак мы видим что действительно слипание двух таблиц представляющих - фото 42

Итак, мы видим, что действительно «слипание» двух таблиц, представляющих отношения, произошло именно по тем кортежам, в которых выполняется условие операции внутреннего соединения P = (b1 = b2).

Теперь на основании уже введенной операции внутреннего соединения мы можем ввести операцию левого внешнего соединенияи правого внешнего соединения. Поясним.

Результатом операции левое внешнее соединение является результат внутреннего соединения, пополненный несоединимыми кортежами левого исходного отношения-операнда. Аналогично результат операции правого внешнего соединения определяется как результат операции внутреннего соединения, пополненный несоединимыми кортежами стоящего справа исходного отношения-операнда.

Вопрос, чем же пополняются результирующие отношения операций левого и правого внешнего соединения, вполне ожидаем. Кортежи одного отношения-операнда дополняются на схеме другого отношения-операнда Null-значениями.

Стоит заметить, что введенные таким образом операции левого и правого внешнего соединения являются производными операциями от операции внутреннего соединения.

Чтобы записать общие формулы для операций левого и правого внешнего соединений, проведем некоторые дополнительные построения.

Пусть нам даны два отношения r 1( S 1) и r 2( S 2) с различными схемами отношений SS 2, не пересекающимися друг с другом.

Так как мы уже оговаривали, что операции левого и правого внутреннего соединения являются производными, то мы можем получить следующие вспомогательные формулы для определения операции левого внешнего соединения:

1) r 3( S 2 ∪ S 1) ≔ r 1( S 1) × P r 2( S 2) ;

r 3( S 2 ∪ S 1) это просто результат внутреннего соединения отношений r 1( S 1) и r 2( S 2) . Левое внешнее соединение является производной операцией именно от операции внутреннего соединения, поэтому мы и начинаем наши построения с нее;

2) r 4( S 1) ≔ r 3( S 2 S 1) [ S 1] ;

Таким образом, с помощью унарной операции проекции, мы выделили все соединимые кортежи левого исходного отношения-операнда r 1( S 1) . Результат обозначили r 4( S 1) для удобства применения;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив Авторов читать все книги автора по порядку

Коллектив Авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Базы данных: конспект лекций отзывы


Отзывы читателей о книге Базы данных: конспект лекций, автор: Коллектив Авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x