Коллектив Авторов - Базы данных: конспект лекций
- Название:Базы данных: конспект лекций
- Автор:
- Жанр:
- Издательство:Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e
- Год:2007
- Город:Москва
- ISBN:978-5-699-23778-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив Авторов - Базы данных: конспект лекций краткое содержание
Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профессионального образования РФ и предназначен для освоения студентами вузов специальной дисциплины «Базы данных».
Лаконичное и четкое изложение материала, продуманный отбор необходимых тем позволяют быстро и качественно подготовиться к семинарам, зачетам и экзаменам по данному предмету.
Базы данных: конспект лекций - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
t 0( S ) ∈ r ( S ) : {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};
Применим оператор переименования к этому кортежу:
ρ<���φ> t 0( S ) : {(№ ЗК: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Балл: 5)};
Итак, это один из кортежей нашего отношения, у которого переименовали атрибуты.
В табличных терминах отношение
ρ < № зачетной книжки, Оценка →«№ ЗК, Балл > Сессия —
это новая таблица, полученная из таблицы отношения «Сессия», переименованием указанных атрибутов.
4. Свойства унарных операций
У унарных операций, как и у любых других, есть определенные свойства. Рассмотрим наиболее важные из них.
Первым свойством унарных операций выборки, проекции и переименования является свойство, характеризующее соотношение мощностей отношений. (Напомним, что мощность – это количество кортежей в том или ином отношении.) Понятно, что здесь рассматривается соответственно отношение исходное и отношение, полученное в результате применения той или иной операции.
Заметим, что все свойства унарных операций следуют непосредственно из их определений, поэтому их можно легко объяснить и даже при желании вывести самостоятельно.
Итак:
1) соотношение мощностей:
а) для операции выборки: | σ < P > r |≤ | r |;
б) для операции проекции: | r [ S' ] | ≤ | r |;
в) для операции переименования: | ρ < φ > r | = | r |;
Итого, мы видим, что для двух операторов, а именно для оператора выборки и оператора проекции, мощность исходных отношений – операндов больше, чем мощность отношений, получаемых из исходных применением соответствующих операций. Это происходит потому, что при выборе, сопутствующему действию этих двух операций выборки и проекции, происходит исключение некоторых строк или столбцов, не удовлетворивших условиям выбора. В том случае, когда условиям удовлетворяют все строки или столбцы, уменьшения мощности (т. е. количества кортежей) не происходит, поэтому в формулах неравенство нестрогое.
В случае же операции переименования, мощность отношения не изменяется, за счет того, что при смене имен никакие кортежи из отношения не исключаются;
2) свойство идемпотентности:
а) для операции выборки: σ < P > σ < P > r = σ < P >;
б) для операции проекции: r [ S’ ] [ S’ ] = r [ S' ];
в) для операции переименования в общем случае свойство идемпотентности неприменимо.
Это свойство означает, что двойное последовательное применение одного и того же оператора к какому-либо отношению равносильно его однократному применению.
Для операции переименования атрибутов отношения, вообще говоря, это свойство может быть применено, но обязательно со специальными оговорками и условиями.
Свойство идемпотентности очень часто используется для упрощения вида выражения и приведения его к более экономичному, актуальному виду.
И последнее свойство, которое мы рассмотрим, – это свойство монотонности. Интересно заметить, что при любых условиях все три оператора монотонны;
3) свойство монотонности:
а) для операции выборки: r 1 ⊆ r 2⇒ σ < P > r 1 ⇒ σ < P > r 2;
б) для операции проекции: r 1 ⊆ r 2 ⇒ r 1[ S' ] ⊆ r 2[ S' ];
в) для операции переименования: r 1 ⊆ r 2 ⇒ ρ < φ > r 1⊆ ρ < φ > r 2;
Понятие монотонности в реляционной алгебре аналогично этому же понятию из алгебры обычной, общей. Поясним: если изначально отношения r 1и r 2были связаны между собой таким образом, что r ⊆ r 2 , то и после применения любого их трех операторов выборки, проекции или переименования это соотношение сохранится.
Лекция № 5. Реляционная алгебра. Бинарные операции
1. Операции объединения, пересечения, разности
У любых операций есть свои правила применимости, которые необходимо соблюдать, чтобы выражения и действия не теряли смысла. Бинарные теоретико-множественные операции объединения, пересечений и разности могут быть применены только к двум отношениям обязательно с одной и той же схемой отношения. Результатом таких бинарных операций будут являться отношения, состоящие из кортежей, удовлетворяющих условиям операций, но с такой же схемой отношения, как и у операндов.
1.Результатом операции объединениядвух отношений r 1( S ) и r 2( S ) будет новое отношение r 3( S ), состоящее из тех кортежей отношений r 1( S ) и r 2( S ), которые принадлежат хотя бы одному из исходных отношений и с такой же схемой отношения.
Таким образом, пересечение двух отношений – это:
r 3( S ) = r 1( S ) ∪ r 2( S ) = { t ( S ) | t ∈ r 1∪ t ∈ r 2} ;
Для наглядности, приведем пример в терминах таблиц:
Пусть даны два отношения:
r 1( S ):

r 2( S ):

Мы видим, что схемы первого и второго отношений одинаковы, только имеют различной количество кортежей. Объединением этих двух отношений будет отношение r 3( S ) , которому будет соответствовать следующая таблица:
r3 ( S ) = r 1( S ) ∪ r 2( S ):

Итак, схема отношения S не изменилась, только выросло количество кортежей.
2. Перейдем к рассмотрению следующей бинарной операции – операции пересечениядвух отношений. Как мы знаем еще из школьной геометрии, в результирующее отношение войдут только те кортежи исходных отношений, которые присутствуют одновременно в обоих отношениях r 1( S ) и r 2( S ) (снова обращаем внимание на одинаковую схему отношения).
Операция пересечения двух отношений будет выглядеть следующим образом:
r 4( S ) = r 1( S ) ∩ r 2( S ) = { t ( S ) | t ∈ r 1& t ∈ r 2};
Читать дальшеИнтервал:
Закладка: