Миран Липовача - Изучай Haskell во имя добра!
- Название:Изучай Haskell во имя добра!
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2012
- Город:Москва
- ISBN:978-5-94074-749-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Миран Липовача - Изучай Haskell во имя добра! краткое содержание
Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.
Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.
Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!
Эта книга поможет многим читателям найти свой путь к Haskell.
Отображения, монады, моноиды и другое! Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.
С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.
Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.
Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:
• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.
• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.
• Организовывать свои программы, создавая собственные типы, классы типов и модули.
• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.
Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей. Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.
Изучай Haskell во имя добра! - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Давайте возьмём список и оставим только те значения, которые меньше 4
. Для начала мы используем обычную функцию filter
:
ghci> filter (\x –> x < 4) [9,1,5,2,10,3]
[1,2,3]
Это довольно просто. Теперь давайте создадим предикат, который помимо представления результата True
или False
также предоставляет журнал своих действий. Конечно же, для этого мы будем использовать монаду Writer
:
keepSmall :: Int –> Writer [String] Bool
keepSmall x
| x < 4 = do
tell ["Сохраняем " ++ show x]
return True
| otherwise = do
tell [show x ++ " слишком велико, выбрасываем"]
return False
Вместо того чтобы просто возвращать значение типа Bool
, функция возвращает значение типа Writer [String] Bool
. Это монадический предикат. Звучит необычно, не так ли? Если число меньше числа 4
, мы сообщаем, что оставили его, а затем возвращаем значение True
.
Теперь давайте передадим его функции filterM
вместе со списком. Поскольку предикат возвращает значение типа Writer
, результирующий список также будет значением типа Writer
.
ghci> fst $ runWriter $ filterM keepSmall [9,1,5,2,10,3]
[1,2,3]
Проверяя результат результирующего значения монады Writer
, мы видим, что всё в порядке. Теперь давайте распечатаем журнал и посмотрим, что у нас есть:
ghci> mapM_ putStrLn $ snd $ runWriter $ filterM keepSmall [9,1,5,2,10,3]
9 слишком велико, выбрасываем
Сохраняем 1
5 слишком велико, выбрасываем
Сохраняем 2
10 слишком велико, выбрасываем
Сохраняем 3
Итак, просто предоставляя монадический предикат функции filterM
, мы смогли фильтровать список, используя возможности применяемого нами монадического контекста.
Очень крутой трюк в языке Haskell – использование функции filterM
для получения множества-степени списка (если мы сейчас будем думать о нём как о множестве). Множеством – степенью некоторого множества называется множество всех подмножеств данного множества. Поэтому если у нас есть множество вроде [1,2,3]
, его множество-степень включает следующие множества:
[1,2,3]
[1,2]
[1,3]
[1]
[2,3]
[2]
[3]
[]
Другими словами, получение множества-степени похоже на получение всех сочетаний сохранения и выбрасывания элементов из множества. Например, [2,3]
– это исходное множество с исключением числа 1
; [1,2]
– это исходное множество с исключением числа 3
и т. д.
Чтобы создать функцию, которая возвращает множество-степень какого-то списка, мы положимся на недетерминированность. Мы берём список [1,2,3]
, а затем смотрим на первый элемент, который равен 1
, и спрашиваем себя: «Должны ли мы его сохранить или отбросить?» Ну, на самом деле мы хотели бы сделать и то и другое. Поэтому мы отфильтруем список и используем предикат, который сохраняет и отбрасывает каждый элемент из списка недетерминированно. Вот наша функция powerset
:
powerset :: [a] –> [[a]]
powerset xs = filterM (\x –> [True, False]) xs
Стоп, это всё?! Угу! Мы решаем отбросить и оставить каждый элемент независимо от того, что он собой представляет. У нас есть недетерминированный предикат, поэтому результирующий список тоже будет недетерминированным значением – и потому будет списком списков. Давайте попробуем:
ghci> powerset [1,2,3]
[[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]
Вам потребуется немного поразмыслить, чтобы понять это. Просто воспринимайте списки как недетерминированные значения, которые толком не знают, чем быть, поэтому решают быть сразу всем, – и эту концепцию станет проще усвоить!
Функция foldM
Монадическим аналогом функции foldl
является функция foldM
. Если вы помните свои свёртки из главы 5, вы знаете, что функция foldl
принимает бинарную функцию, исходный аккумулятор и сворачиваемый список, а затем сворачивает его слева в одно значение, используя бинарную функцию. Функция foldM
делает то же самое, только она принимает бинарную функцию, производящую монадическое значение, и сворачивает список с её использованием. Неудивительно, что результирующее значение тоже является монадическим. Тип функции foldl
таков:
foldl :: (a –> b –> a) –> a –> [b] –> a
Тогда как функция foldM
имеет такой тип:
foldM :: (Monad m) => (a –> b –> m a) –> a –> [b] –> m a
Значение, которое возвращает бинарная функция, является монадическим, поэтому результат всей свёртки тоже является монадическим. Давайте сложим список чисел с использованием свёртки:
ghci> foldl (\acc x –> acc + x) 0 [2,8,3,1]
14
Исходный аккумулятор равен 0
, затем к аккумулятору прибавляется 2
, что даёт в результате новый аккумулятор со значением 2
. К этому аккумулятору прибавляется 8
, что даёт в результате аккумулятор равный 10
и т. д. Когда мы доходим до конца, результатом является окончательный аккумулятор.
А ну как мы захотели бы сложить список чисел, но с дополнительным условием: если какое-то число в списке больше 9
, всё должно окончиться неудачей? Имело бы смысл использовать бинарную функцию, которая проверяет, больше ли текущее число, чем 9
. Если больше, то функция оканчивается неудачей; если не больше – продолжает свой радостный путь. Из-за этой добавленной возможности неудачи давайте заставим нашу бинарную функцию возвращать аккумулятор Maybe
вместо обычного.
Вот бинарная функция:
binSmalls :: Int –> Int –> Maybe Int
binSmalls acc x
| x > 9 = Nothing
| otherwise = Just (acc + x)
Поскольку наша бинарная функция теперь является монадической, мы не можем использовать её с обычной функцией foldl
; следует использовать функцию foldM
. Приступим:
ghci> foldM binSmalls 0 [2,8,3,1]
Just 14
ghci> foldM binSmalls 0 [2,11,3,1]
Nothing
Клёво! Поскольку одно число в списке было больше 9
, всё дало в результате значение Nothing
. Свёртка с использованием бинарной функции, которая возвращает значение Writer
, – тоже круто, потому что в таком случае вы журналируете что захотите по ходу работы вашей свёртки.
Создание безопасного калькулятора выражений в обратной польской записи
Решая задачу реализации калькулятора для обратной польской записи в главе 10, мы отметили, что он работал хорошо до тех пор, пока получаемые им входные данные имели смысл. Но если что-то шло не так, это приводило к аварийному отказу всей нашей программы. Теперь, когда мы знаем, как сделать уже существующий код монадическим, давайте возьмём наш калькулятор и добавим в него обработку ошибок, воспользовавшись монадой Maybe
.
Интервал:
Закладка: