Денис Соломатин - Основы статистической обработки педагогической информации

Тут можно читать онлайн Денис Соломатин - Основы статистической обработки педагогической информации - бесплатно ознакомительный отрывок. Жанр: comp-programming, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Основы статистической обработки педагогической информации
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2020
  • ISBN:
    978-5-532-04389-3
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Денис Соломатин - Основы статистической обработки педагогической информации краткое содержание

Основы статистической обработки педагогической информации - описание и краткое содержание, автор Денис Соломатин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Учебное пособие содержит текстовые сведения, иллюстрации и задания по основам статистической обработки педагогической информации в R, вольный пересказ содержимого сайта r4ds.had.co.nz, многие годы аккумулирующего труды исследователей всего мира, с занимательными дополнениями и историческими справками в попытке адаптации материала под профессиональные нужды современных онлайн-учителей. Последняя глава посвящена изучению возможностей R, позволяющих открыть собственную онлайн-школу.

Основы статистической обработки педагогической информации - читать онлайн бесплатно ознакомительный отрывок

Основы статистической обработки педагогической информации - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Денис Соломатин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы отобразить настройки форматирования в переменную, сопоставляется имя настраиваемого параметра, например цвета (color), с именем переменной внутри aes(). ggplot2 автоматически присвоит уникальный цвет для каждого уникального значения переменной, а также добавит объяснение, какие уровни каким значениям соответствуют.

Цветом показано, что многие из необычных точек охватывают двухместные автомобили. Эти автомобили не похожи на гибриды, и выглядят, по сути, как спортивные автомобили. Спортивные автомобили имеют большие двигатели, такие как внедорожники или пикапы, но небольшие кузова, такие как средние и компактные автомобили, что улучшает их экономичность. В ретроспективе, эти автомобили вряд будут гибридами, так как у них есть большие двигатели.

В приведенном выше примере сопоставлен класс с цветом, но можно сопоставить класс с размером точки точно так же. В этом случае размер каждой точки будет демонстрировать классовую принадлежность. Достаточно лишь заменить color = class на size = class, но будет получено предупреждение от интерпретатора, так как сопоставление неупорядоченной переменной (class) с упорядоченной категорией размера (size) не самая лучшая идея.

#> Предупреждение: использование параметра size для дискретной переменной не рекомендуется.

Кроме того, можно сопоставить класс с уровнем прозрачности точек (alpha), либо с их формой (shape). Для этого достаточно заменить color = class на alpha = class, либо на shape = class соответственно. Но в последнем случае ggplot2 может использовать только до шести фигур одновременно, по умолчанию все остальные группы будут отключены.

Для каждой эстетики используется aes(), чтобы связать имя эстетического объекта с переменной для отображения. Функция aes() собирает вместе каждое из эстетических отображений, используемых слоем и передает их в аргумент отображения слоя. Синтаксис выделяет полезную информацию об осях x и y : расположение объектов x и y , точки сами по себе являются эстетикой, визуальными свойствами, которые можно отобразить к переменным для демонстрации данных. После того, как настроена эстетика, ggplot2 заботится обо всём остальном. Выбирается оптимальный масштаб для использования, строится легенда, которая объясняет условные обозначения. Для координатных осей x и y функция ggplot2 не создает легенду, но будут построены осевые линии с делениями и метками. Линия оси сама по себе выступает в качестве легенды, так как она объясняет связь между расположением и координатами точек.

По аналогии можно задавать свойства объекта geom вручную, например, можно сделать все точки на диаграмме зелеными, если использовать следующий синтаксис:

geom_point(mapping = aes(x = displ, y = hwy), color = "green")

Здесь цвет не передает информацию о переменном, он только меняет внешний вид графика. Устанавливая параметры вручную, можно регулировать общий стиль диаграмм. В частности, форму точек можно задавать порядковыми номерами, например, 0, 15 и 22 – это квадраты, разница между ними заключается в том, что некоторые залиты сплошным цветом. Полые формы (0-14) имеют границу, определяемую значением параметра color; сплошные формы (15-18) заполнены цветом указанным в color; а заполненные формы (21-24) имеют границу, совпадающую с цветом заливки.

Упражнения

1. Как сделать цвет всех точек графика синим?

2. Какие переменные в базе mpg являются категориальными? Который переменные являются непрерывными? (Подсказка: найдите в документации описание типов полей таблицы mpg). Где найти эту информацию при открытии справки по mpg?

3. Сопоставьте непрерывную переменную с цветом, размером и формой. Как такие настройки эстетики поведут себя для категориальных в отличии от непрерывных переменных?

4. Что произойдет, если сопоставить одну и ту же переменную с несколькими эстетиками?

5. Что делает эстетика stroke? В каких случаях она применима? (Подсказка: в документации найдите описание функции geom_point, для этого в консоли можно ввести ?geom_point)

6. Что произойдет, если сопоставите эстетику с чем-то другим, не являющимся именем переменной, например color = displ < 5? Как и прежде предварительно нужно будет указать значения параметров x и y .

Когда начнете выполнять код R, возможны некоторые затруднения. Не волнуйтесь, это случается со всеми. Автор книги тоже писал код R, в течение многих лет, который работает не сразу. Начните с тщательного сравнения кода, который используете, с кодом из книги. R чрезвычайно придирчив. Убедитесь, что каждая открывающаяся скобка «(«соответствует закрывающейся «)», а каждая кавычка «"» имеет парную «"». Иногда запускаете код, но ничего не происходит. Проверьте содержимое левого нижнего угла консоли: если там «+», это означает, что R ничего не делает, просто набрали не полное выражение, и он ждет завершения ввода. В этом случае можно начать с начала, нажав клавишу ESC, чтобы прервать обработку текущей команды.

Частая ошибка при создании графиков ggplot2 это расположение «+» в неправильном месте, он должен находиться в конце строки, а не в начале. Убедитесь, что не сделали этого случайно. Если всё ещё в тупике, попробуйте обратиться к справочной информации. Для получения развернутой справки о любой функции R достаточно ввести команду ?имя_функции в консоли, или выделить имя интересующей функции и нажать клавишу F1 в RStudio. Не волнуйтесь, если справки не кажется, бывает полезным вместо этого перейти к примерам и найти код, который соответствует тому, что пытаетесь сделать. Если и это не помогает, то внимательно перечитайте сообщение об ошибке. Иногда ответ содержится именно там. Просто для начинающих пользователей R, ответ может находиться в сообщении об ошибке, но не приходит его понимания. Еще одним отличным инструментом является Yandex, попробуйте поискать сообщение об ошибке в интернете, так как возможно, у кого-то была аналогичная проблема, и её решение описали на специализированных онлайн-форумах.

Как было показано выше, один из способов добавить дополнительные измерения на графике, это художественные вариации эстетических параметров. Но есть ещё один способ, особенно полезный для категориальных переменные, – это разбивка графика на фрагменты, подзадачи, каждая из которых заключается в отображении некоторого подмножества анализируемых данных.

Чтобы собрать свой график из нескольких фрагментов от одной одной переменной, используйте facet_wrap(). Первым аргументом функции facet_wrap() должна быть именем структуры данных в R, которое начинается с символа «~», за которым следует имя переменной. Переменная, передаваемая в функцию facet_wrap(), должна быть дискретной. Например, следующая команда:

ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy)) +

facet_wrap(~ class, nrow = 1)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Денис Соломатин читать все книги автора по порядку

Денис Соломатин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Основы статистической обработки педагогической информации отзывы


Отзывы читателей о книге Основы статистической обработки педагогической информации, автор: Денис Соломатин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x