Жак Арсак - Программирование игр и головоломок

Тут можно читать онлайн Жак Арсак - Программирование игр и головоломок - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство Наука. Гл. ред. физ.-мат. лит., год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Программирование игр и головоломок
  • Автор:
  • Жанр:
  • Издательство:
    Наука. Гл. ред. физ.-мат. лит.
  • Год:
    1990
  • Город:
    Москва
  • ISBN:
    5-02-013959-9
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Жак Арсак - Программирование игр и головоломок краткое содержание

Программирование игр и головоломок - описание и краткое содержание, автор Жак Арсак, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Рассматриваются способы программирования различных занимательных игр и головоломок с числами, геометрическими фигурами и др. Изложение большинства игр и головоломок ведется в несколько этапов. Сначала разъясняется сама постановка задачи и требования, предъявляемые к алгоритму ее решения.

В следующем разделе книги обсуждается сам алгоритм и возможные пути его реализации.

В конце книга по многим играм и головоломкам даются наброски их программной реализации. Используемый при этом язык типа Паскаля допускает перевод на другие широко распространенные языки программирования.

Для начинающих программистов, студентов вузов и техникумов.

Программирование игр и головоломок - читать онлайн бесплатно полную версию (весь текст целиком)

Программирование игр и головоломок - читать книгу онлайн бесплатно, автор Жак Арсак
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Берутся 7 костяшек из одного набора домино. Напомним, что эти шашки сделаны из двух частей, на каждой из которых либо ничего не написано (чистая сторона), либо очки в числе от 1 до 6,

Задача состоит в том, чтобы образовать из этих 7 костей все возможные цепи, состыковывая костяшки домино частями с равными количествами точек. Нет никакой уверенности, что такая цепь существует.

Не ведите себя так, как некоторые из соревнующихся на этом конкурсе. Я тогда входил в жюри. Мы должны были оценивать работы соревнующихся. Если бы я принимал решения единолично, я потребовал бы, чтобы мне были представлены тексты программ, и я бы судил по самим произведениям. Но другие члены жюри нашли более длинный и более сложный метод, Они приготовили специальные тесты. Они должны были быть испытаны на программах соревнующихся, и нужно было подсчитать число правильных ответов, чтобы расклассифицировать соревнующихся. Новое обсуждение: я выдвигаю оценку, что и один-единственный неверный ответ выражает ошибочность программы и, следовательно, выводит ее из конкурса. В конце концов было решено, что так и будем делать. Все программы, содержащие ошибку, будут рассматриваться как неверные, Если две команды получат одинаково верные ответы, то мы еще раз детально изучим полученные результаты, стараясь разгадать природу ошибки при переходе к данному тесту от уже удавшихся, чтобы отдать одному из них предпочтение. Вот нам и досталось: один ив соревнующихся, думая, что с удавшимися тестами это согласуется, пытался упростить программу для домино. Он сказал себе, что вне всякого сомнения, будут даны кости, из которых никаких цепей ставить нельзя. Его программа читала последовательность костей домино и сообщала НЕВОЗМОЖНО без каких-либо других вычислений. Если бы я не настаивал на своем так решительно, то он был бы не хуже других…

Не поступайте так. Эта задача при всем том нетрудная… Рис. 29 дает пример цепи.

Головоломка 23Последовательность 0146 Это головоломка на которую я - фото 25

* Головоломка 23.Последовательность 0—1—4—6.

Это головоломка, на которую я натолкнулся, работая над своей диссертацией на ученую степень по физике. Я занимался сетями антенн для радиоастрономии. Сеть антенн состоит из основания, на котором по одной линии размещены отдельные антенны, доставляющие информацию о наблюдаемых нами звездах. Каждая нара антенн дает информацию о некоторой величине, пропорциональной расстоянию между двумя антеннами этой пары. Нас интересуют значения этой величины, образующие арифметическую прогрессию. Таким образом, нужно было располагать антенны таким образом, чтобы расстояния между равными парами образовывали арифметическую прогрессию. Я предложил систему из 4 антенн, расположенных на прямой в точках с абсциссами 0 1 4 6.

Тогда получаемые из них 6 различных пар приводят к расстояниям между антеннами, пропорциональным следующим числам:

0—1 1

4—6 2

1—4 3

0—4 4

1—6 5

0—6 6

Можно сформулировать задачу по-другому. Нужно найти последовательность натуральных чисел a 1, a 2, …, a n — последовательность, которую можно предполагать возрастающей — такую, чтобы попарные разности членов этой последовательности a ja i ( j > i ) были попарно различны и образовывали последовательность всех целых чисел от 1 до n ( n − 1)/2.

Это — еще и проблема трансформатора (см. рис. 30), Если включить во вторичную обмотку 4 выхода так, чтобы число витков между первым и другими выходами находилось в отношениях 1, 4 и 6, то можно получить 6 напряжений на выходе, образующих арифметическую прогрессию.

Опустим другие физические задачи порождающие такие последовательности - фото 26

Опустим другие физические задачи, порождающие такие последовательности. Четырехчленная последовательность 0—1—4—6, по-видимому, является наибольшей последовательностью, обладающей свойством порождать последовательность первых целых чисел, не пропуская и не повторяя дважды ни одного из них, при попарном вычитании членов этой последовательности.

Так, для 5 целых можно образовать 10 разностей. Поэтому крайние члены должны быть a 1= 0, a 5= 10. Чтобы получить в виде разности 9 из двух членов последовательности, нужно, чтобы либо было a 2= 1, и тогда a 5− a 2= 9, либо a 4= 9. Эти два решения легко получаются одно из другого операцией симметрии, Поэтому положим a 2= 1.

К этому моменту мы получили уже a 1= 0, a 2= 1, a 5= 10. Чтобы получить разность, равную 8, нужно взять

— либо a 3= 2, но тогда разность, равная 1, получается дважды:

a 3− a 2= a 2− a 1

— либо a 4= 8,

— либо a 4= 9, но тогда снова дублируется разность 1. Следовательно, a 1= 0, a 2= 1, a 4= 8, a 5= 10.

Достаточно теперь пересмотреть одно за другим возможные значения а 3и удостовериться, что каждое ив них дублирует какую-то разность.

Для a 3, равного 2, дублируется разность 1:

3 2

4 4

5 5

6 2

7 1

Таким образом, нет последовательности из 5 целых, попарные разности которых порождают 10 первых натуральных чисел. Допустим теперь возможность повторений в последовательности разностей. Можно ли с помощью 5 членов породить — с помощью их разностей — 9 первых натуральных чисел?

Об этих последовательностях ничего не известно. Пусть дано число n членов последовательности; каково наибольшее число последовательных целых чисел, начиная с 1, которые можно получить с помощью попарных разностей членов последовательности?

Запрограммировать это не очень трудно. Но берегитесь чересчур долгих вычислений!

?** Головоломка 24.Прогулка королевы.

Нет, не в Булонском лесу, если говорить серьезно… Прогулки фигур на шахматной доске — классический сюжет для головоломок. Эйлеровский конь должен обойти всю шахматную доску и вернуться на поле, с которого отправился в путь, не попадая дважды ни на одну клетку. Это настолько общеизвестно, что это уже и не головоломка. Но если вы не знаете решения, я не мешаю вам попробовать.

Случай «королевы» (ферзя) — немного другой. Эта фигура может перемещаться по горизонтали, по вертикали или по диагонали. Назовем «движением» перемещение на некоторое число полей в определенном направлении, Разрешается много раз проходить по одному и тому же полю. Но требуете пройти все поля эа наименьшее возможное число движений, причем, конечно, нужно вернуться на исходное поле. Так как число движений не дано, то не попытаетесь ли вы сначала проделать все вручную, чтобы угнать верхнюю границу…

???* Головоломка 25.Девушки ив пансиона Киркмана.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жак Арсак читать все книги автора по порядку

Жак Арсак - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Программирование игр и головоломок отзывы


Отзывы читателей о книге Программирование игр и головоломок, автор: Жак Арсак. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x