Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Листинг 9.13. Удаление элемента, заданного его дескриптором
function TtdPriorityQueueEx.Remove(aHandle : TtdPQHandle): pointer;
var
Handle : PpqexNode absolute aHandle;
NewHandle : PpqexNode;
HeapInx : integer;
begin
{вернуть элемент, а затем удалить дескриптор}
Result := Handle^.peItem;
HeapInx := Handle^.peInx;
DeleteLinkedListNode(FHandles, Handle);
{выполнить проверку того, что был удален последний элемент. Если это так, нужно просто уменьшить размер сортирующего дерева - при этом свойство пирамидальности будет сохранено}
if (HeapInx = pred(FList.Count)) then
FList.Count := FList.Count - 1
else begin
{заменить элемент сортирующего дерева дочерним элементом, расположенным в самой нижней крайней справа позиции, и уменьшить размер списка}
NewHandle := FList.Last;
FList.List^[HeapInx] := NewHandle;
NewHandle^.peInx := HeapInx;
FList.Count := FList.Count - 1;
{дальнейшие действия совпадают с выполнением операции изменения приоритета}
ChangePriority(NewHandle);
end;
end;
Полный код этого класса можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDPriQue.pas.
Резюме
В этой главе мы уделили основное внимание очередям по приоритету - очередям, которые возвращают не самый первый помещенный в них элемент, а элемент с наивысшим приоритетом. Исследовав несколько простых реализаций, мы ознакомились с реализацией, предполагающей использование сортирующего дерева. Мы рассмотрели базовые свойства и операции сортирующего дерева и научились применять их в как в качестве алгоритма пирамидальной сортировки, так и для удовлетворения первоначального требования, предъявляемого к очереди по приоритету.
И, наконец, мы расширили определение очереди по приоритету для обеспечения выполнения ряда дополнительных операций: удаления произвольного элемента и изменения приоритета данного элемента. Мы выяснили, какие изменения нужно внести в реализацию с целью поддержки этих операций.
Глава 10. Конечные автоматы и регулярные выражения.
Существует целый класс проблем, которые могут быть решены с помощью авторучки и бумаги. По-моему, это замечательный аспект программирования: иметь возможность графически представить какой-либо процесс, а затем закодировать его. Я имею в виду алгоритмы, в которых используются конечные автоматы.
Конечные автоматы
В отличие от большинства рассмотренных в этой книге алгоритмов, конечные автоматы - это технологии, призванные облегчать разработку других алгоритмов. Они служат средством достижения конечной цели - реализации алгоритма. Тем не менее, как будет показано, они обладают рядом интересных особенностей. В основном мы будем рассматривать конечные автоматы, которые реализуют алгоритмы синтаксического анализа (parsing algorithm). Синтаксический анализ означает считывание строки (или текстового файла) и разбиение последовательностей символов на отдельные лексемы. Конечный автомат, который выполняет синтаксический анализ, обычно называют синтаксическим анализатором (parser).
Использование конечного автомата: синтаксический анализ
Чтобы лучше понять весь процесс, рассмотрим пример. Предположим, что требуется разработать алгоритм, который должен извлекать отдельные слова из строки текста. Извлекаемые слова будут помещаться в список строк. Более того, желательно, чтобы внутри строки текст, заключенный в кавычки, воспринимался как одно слово. Т.е., если имеется строка:
Не said, "State machines?"
процедура должна игнорировать знаки препинания и пробелы и возвращать следующее:
Не
said
"State machines?"
Обратите внимание, что пробел и вопросительный знак внутри заключенного в кавычки текста остались без изменений.
Простейший способ реализации этого конкретного алгоритма - использование конечного автомата. Конечный автомат (state machine) - это система (обычно цифровая), которая переходит из одного состояния в другое в соответствии с принимаемыми ею входными данными (сигналами). Смена состояний называется переходом (trAnsition). Конечный автомат можно представить специальной блок-схемой. Блок схема рассматриваемого алгоритма показана на рис. 10.1.
Показанный на рисунке конечный автомат имеет три состояния: А, В и С. Работа блок-схемы начинается с состояния A. В этом состоянии выполняется считывание символа из входной строки. Если этот символ - двойная кавычка, осуществляется переход в состояние В. Если символ является пробелом или знаком препинания, выполняется переход в состояние С. Если это любой другой символ, конечный автомат остается в состоянии А (это показано петлей).
После перехода в состояние В считывание символов продолжается в нем до тех пор, пока не будет считан символ закрывающей двойной кавычки. В этот момент происходит переход обратно в состояние A.
С другой стороны, если был выполнен переход в состояние С, считывание символов продолжается в этом состоянии до тех пор, пока не произойдет одно из двух: либо не будет выполнено считывание символа двойной кавычки, в результате чего произойдет переход в состояние В, либо не будет выполнено считывание символа, который не является ни двойной кавычкой, ни пробелом, ни знаком препинания, в результате чего будет осуществлен переход в состояние A.

Рисунок 10.1. Конечный автомат извлечения слов из строки
Во время перехода может требоваться также выполнение какого-либо действия. Предположим, что мы используем строку для накапливания символов текущего слова. Первоначальный переход в состояние А очистит эту строку. Циклический переход из состояния А в состояние А допишет символ к текущему слову. Переход из состояния А в состояние В вначале добавит текущее слово (если таковое имеется) к списку строк, а затем установит в качестве текущего слова открывающую двойную кавычку. Циклический переход из состояния В в это же состояние допишет символ к текущему слову. Переход из состояния В обратно в состояние А допишет закрывающую двойную кавычку к текущему слову, добавит его в список строк, а затем очистит текущее слово. При переходе из состояния А в состояние С текущее слово добавляется в список строк, а затем очищается. Переход из состояния С в это же состояние не вызывает никаких действий (именно во время этого перехода происходит действительное отбрасывание пробелов и знаков препинания). При переходе из состояния С в состояние А значение текущего слова устанавливается равным считываемому символу. При переходе из состояния С в состояние В текущее слово устанавливается равным открывающей двойной кавычке.
Проанализировав рисунок 10.1, как это описано в предыдущем абзаце, легко убедиться, что конечный автомат прекрасно реализует рассматриваемый алгоритм.
Читать дальшеИнтервал:
Закладка: