Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Переход в состояние А; очистка слова
Считывание ' H1; сохранение состояния А; слово = ' H'
Считывание 'e'; сохранение состояния А; слово = ' Не'
Считывание ' '; переход в состояние С; вывод слова 'Не', очистка слова
Считывание 's'; переход в состояние А; слово = ' s'
Считывание 'a'; сохранение состояния А; слово = ' sa'
Считывание 'i'; сохранение состояния А; слово - 'sai'
Считывание 'd';сохранение состояния А; слово = 'said'
Считывание ','; переход в состояние С; вывод слова 'said', очистка слова
Считывание ' '; сохранение состояния С
Считывание '"';переход в состояние А;слово = '"'
Считывание 'S';сохранение состояния В; слово = "'S'
и. т.д.
Однако, блок-схема конечного автомата, показанная на рис. 10.1, обладает еще одной особенностью, о которой еще ничего не было сказано. Состояния А и С обозначены двойными окружностями, в то время как состояние В - одинарной. По соглашению в диаграммах конечных автоматов двойные окружности используются для обозначения конечного состояния (называемого также состоянием останова (halt state) или поглощающим состоянием (accepting state)). Когда входная строка полностью считана, конечный автомат оказывается в особом состоянии (применительно к приведенному выше примеру строки заключительное состояние конечного автомата - состояние А). Если заключительное состояние является конечным, говорят что конечный автомат поглощает входную строку. Независимо от того, какие символы (или, точнее, лексемы (tokens)) были найдены во входной строке и какие при этом были осуществлены переходы, конечный автомат "понимает" строку. С другой стороны, если бы конечный автомат прекратил работу в незавершенном состоянии, строка не была бы принята (поглощена) и конечный автомат не понял бы ее.
В данном случае состояние В не является поглощающим состоянием. Что это означает на практике? Если в момент, когда входная строка исчерпана, конечный автомат находится в состоянии В, это означает, что был считан первый символ двойной кавычки, но не второй. Т.е. конечный автомат считывает строку, содержащую текст с непарным символом двойной кавычки. В зависимости от строгости алгоритма, эта ситуация может считаться ошибкой либо просто игнорироваться. В алгоритме, изображенном на рис. 10.1, она считается ошибкой.
Если говорить об ошибках, хотя в данном конкретном примере эта ситуация не отражена, возможно состояние, когда переход к конкретному символу или лексеме невозможен. Это немедленно привело бы к ошибке. В дальнейшем будет показано, как это свойство можно встроить в сам конечный автомат.
Вычертив блок-схему, теперь ее необходимо реализовать. Для простоты понимания мы немного изменим ее, чтобы считывание входной строки управляло конечным автоматом, а не чтобы каждое состояние приводило к считыванию следующего символа из входной строки. Это облегчит понимание процесса выхода из конечного автомата.
Код реализации конечного автомата, показанного на рис. 10.1, приведен в листинге 10.1 (полный исходный код можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDStates.pas). Обратите внимание, что было решено назвать состояния не абстрактно А, В и С, как на рисунке, а с использованием описательных имен ScanNormal, ScanQuoted и ScanPunctuation (соответственно, СчитываниеОбычныхСимволов, СчитываниеКавычек и СчитываниеЗнаковПрепинания).
Листинг 10.1. Извлечение слов из строки
procedure TDExtractWords(const S : string; aList : TStrings);
type
TStates = (ScanNormal, ScanQuoted, ScanPunctuation);
const
WordDelim= ' !<>[]{}(),./?;:-+=*&';
var
State : TStates;
Inx : integer;
Ch : char;
CurWord : string;
begin
{инициализация путем очистки списка строк и начало работы в состоянии ScanNormal с пустым словом}
Assert(aList <> nil, 'TDExtractWords: list is nil');
aList.Clear;
State := ScanNormal;
CurWord := '';
{считывание всех символов строки}
for Inx := 1 to length(S) do
begin
{get the next character}
Ch := S[Inx];
{обработка в зависимости от состояния}
case State of
ScanNormal : begin
if (Ch = '"') then begin
if (CurWord <> '') then
aList.Add(CurWord);
CurWord := '';
State := ScanQuoted;
end
else
if (TDPosCh(Ch, WordDelim) <> 0) then begin
if (CurWord <> '') then begin
aList.Add(CurWord);
CurWord := '''';
end;
State := ScanPunctuation;
end else
CurWord := CurWord + Ch;
end;
ScanQuoted : begin
CurWord := CurWord + Ch;
if (Ch = '"') then begin
aList.Add(CurWord);
CurWord := '';
State := ScanNormal;
end;
end;
ScanPunctuation : begin
if (Ch = '''') then begin
CurWord := '''';
State := ScanQuoted;
end
else
if (TDPosCh(Ch, WordDelim) = 0) then begin
CurWord := Ch;
State := ScanNormal;
end end;
end;
end;
{если по достижении конца строки текущим состоянием является ScanQuoted, это означает несоответствие символа двойной кавычки}
if (State = ScanQuoted) then
raise EtdStateException.Create(FmtLoadStr (tdeStateMisMatchQuote,
[UnitName, 'TDExtractWords']));
{если текущее слово не является пустым, добавить его в список}
if (CurWord <> '') then
aList.Add(CurWord);
end;
Код извлекает символ из входной строки, а затем входит в оператор Case, который переключает текущее состояние. Для каждого состояния предусмотрены операторы If, которые реализуют соответствующие действия и переходы в зависимости от значения текущего символа. В конце кода, если завершение программы происходит в состоянии ScanQuoted, генерируется исключение.
------------
Этот код работает неэффективно в 32-разрядной среде Delphi. Код строит текущее слово посимвольно, используя строковую операцию +. Для длинных строк этот метод крайне неэффективен, поскольку операция вынуждена периодически перераспределять область памяти, в которой хранится строка, для размещения дополнительных символов. Первоначально строка пуста. Затем в нее добавляется первый символ. Поскольку пустая строка является нулевым указателем, под нее выделяется определенный объем памяти (в лучшем случае 8 байт), и строка изменяется, чтобы указывать на него. Символ добавляется в строку. После того, как в нее будет добавлено еще семь символов, выделенный под строку объем памяти должен быть перераспределен, чтобы в нее можно было поместить еще один символ. Еще одна причина низкой эффективности программы связана с операцией добавления символа. Компилятор генерирует код, обеспечивающий преобразование символа во временную односимвольную строку, а затем объединяет эти строки. Понятно, что преобразование символа в длинную строку требует выделения дополнительного объема памяти.
Оба описанных фактора приводят к снижению быстродействия программы TDExtractWords. Чтобы решить указанные проблемы, можно внести в код следующие изменения, хотя они и делают конечную цель менее очевидной, по крайней мере, с точки зрения программиста, отвечающего за сопровождение.
• Вместо того чтобы установить значение переменной CurWord равным ' ', необходимо вызвать метод Set Length, чтобы заранее распределить память под строку. В зависимости от конкретных требований, следует выбрать приемлемое значение, определяющее длину слова в байтах. (Например, приемлемым значением может быть длина символа S. Длина извлекаемого слова не может превышать это значение.)
Читать дальшеИнтервал:
Закладка: