Артур Бенджамин - Магия математики: Как найти x и зачем это нужно

Тут можно читать онлайн Артур Бенджамин - Магия математики: Как найти x и зачем это нужно - бесплатно ознакомительный отрывок. Жанр: foreign_edu, издательство Литагент Альпина, год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Магия математики: Как найти x и зачем это нужно
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-9614-4466-7
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно краткое содержание

Магия математики: Как найти x и зачем это нужно - описание и краткое содержание, автор Артур Бенджамин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно - читать онлайн бесплатно ознакомительный отрывок

Магия математики: Как найти x и зачем это нужно - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Артур Бенджамин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
10 × 45 = 10 240

то есть почти в 2 раза выше, чем у флеша. А шанс его получить – 1 к 250. Именно поэтому флеш в покере ценится больше: его куда сложнее собрать.

Еще более ценен фул-хаус – 3 карты одного достоинства плюс 2 карты другого. Что-то вроде этого [9]:

Чтобы подсчитать свои шансы на фулхаус нам сперва нужно выбрать необходимое - фото 105

Чтобы подсчитать свои шансы на фул-хаус, нам сперва нужно выбрать необходимое нам достоинство, которое попадется нам трижды (13 вариантов), потом – то, которое попадется дважды (12 вариантов). Допустим, нам нужны 3 дамы и 2 семерки. Определимся с мастями. Получить нужных нам дам можно Магия математики Как найти x и зачем это нужно - изображение 106способами, семерки – Магия математики Как найти x и зачем это нужно - изображение 107способами. Общее количество фул-хаусов, таким образом, равняется

13 × 12 × 4 × 6 = 3744

Следовательно, вероятность его собрать – 3744/2 598 960 или 1 к 700.

От фул-хаусов перейдем к двум парам . Здесь нам нужны две карты одного достоинства, еще две – другого, и последняя – третьего, например

Пытаясь посчитать количество возможных пар многие ошибочно начинают с 13 12 - фото 108

Пытаясь посчитать количество возможных пар, многие ошибочно начинают с 13 × 12, как в случае с фул-хаусами. Но теперь нам нужно немного другое, ведь здесь вероятность получить две семерки после двух дам – это абсолютно то же, что и получить двух дам после двух семерок. Поэтому правильно будет начать с картинка 109(имея в виду и семерки, и дам), потом выбрать новое достоинство для непарной карты (пусть это будет пятерка), затем выбрать масти. Количество комбинаций с двумя парами –

Появляются они в 5 случаев Подробнее на всех вариантах раздач мы - фото 110

Появляются они в 5 % случаев.

Подробнее на всех вариантах раздач мы останавливаться не будем, но я попрошу вас взглянуть на следующие подсчеты и проверить, насколько они верны. Комбинаций с каре- [10], вроде Магия математики Как найти x и зачем это нужно - изображение 111может быть

Магия математики Как найти x и зачем это нужно - изображение 112

с тройкой- [11], например, Магия математики Как найти x и зачем это нужно - изображение 113

Магия математики Как найти x и зачем это нужно - изображение 114

с одной парой – скажем, Магия математики Как найти x и зачем это нужно - изображение 115

всего 42 всех возможных комбинаций Отступление А сколько же может быть - фото 116

всего – 42 % всех возможных комбинаций.

Отступление

А сколько же может быть «пустых» комбинаций – без пар, без стритов и без флешей? Можете, конечно, сложить все числа, которые мы получили до этого и вычесть сумму из но я облегчу вам жизнь и просто дам ответ Первая часть это количество - фото 117но я облегчу вам жизнь и просто дам ответ:

Первая часть это количество комбинаций 5 карт разного достоинства за вычетом - фото 118

Первая часть – это количество комбинаций 5 карт разного достоинства за вычетом 10 последовательных (вроде 3-4-5-6-7). Следующая часть охватывает вероятные «расклады» этих 5 карт разного достоинства; для каждого достоинства у нас есть 4 варианта, но при этом мы должны исключить возможность того, что все они встретятся в одном «раскладе». Все это значит, что наши шансы собрать «пустую» комбинацию – 50,1 %. А еще это значит, что в 49,9 % случаев мы будем играть как минимум с одной парой.

А теперь вопрос, на который можно дать целых три прелюбопытных ответа, причем правильными из них будут сразу два! Сколько существует комбинаций, в которых есть как минимум один туз? Уверен, вас так и подмывает ответить картинка 119что, само собой, неправильно . Вы же исходите (и напрасно) из того, что сначала нужно выбрать туза (4 варианта), а потом собирать любые другие 4 карты из 51 оставшейся в колоде. Неправильно здесь то, что вы таким образом просчитываете некоторые комбинации (а именно – те, в которых больше одного туза) несколько раз. Например, комбинация Магия математики Как найти x и зачем это нужно - изображение 120 будет посчитана дважды: сначала для Т ♠ в качестве первой, основной карты, а затем так же для картинка 121Правильный способ решить эту задачу – разбить ее на четыре задачи поменьше, в зависимости от того, сколько тузов будет в комбинации. Так, комбинаций именно с одним тузом будет картинка 122(сначала выбираем туза, потом – остальные 4 карты другого достоинства). Затем отдельно же просчитываем комбинации с двумя, тремя и четырьмя тузами. В результате получаем

Но проще всего будет пойти от обратного Сначала посчитаем количество - фото 123

Но проще всего будет пойти от обратного . Сначала посчитаем количество комбинаций без туза (это легче легкого) – А количество комбинаций по крайней мере с одним тузом таким образом Я уже - фото 124А количество комбинаций по крайней мере с одним тузом, таким образом, –

Я уже говорил чуть выше что цена комбинаций в покере зависит от частоты их - фото 125

Я уже говорил чуть выше, что «цена» комбинаций в покере зависит от частоты их появлений: чем реже комбинация, тем она «ценнее». То есть если шансов собрать одну пару больше, чем сразу две, одна пара ценится куда меньше двух. Вот «стоимость» всех комбинаций, от меньшей к большей:

Пара

Две пары

Тройка

Стрит

Флеш

Фул-хаус

Каре (или «четверка»)

Стрит-флеш

На этот случай есть эффективная «запоминалка»: «Раз, два, три, стрит, флеш; два-три, четыре, стрит-флеш» (где «два-три» – это фул-хаус).

А теперь предположим, что в колоде появились джокеры. Всего карт у нас становится 54, причем джокеры (всего их два) могут «превращаться» в карту любой масти и любого достоинства – в зависимости от того, что вам нужно для наилучшей комбинации. То есть если у вас на руках Магия математики Как найти x и зачем это нужно - изображение 126и джокер, разумнее всего будет посчитать его тузом, чтобы получилась тузовая тройка. Можно «превратить» джокера и в короля, конечно, но тогда у вас будет две пары, что хуже, чем тройка [12].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Артур Бенджамин читать все книги автора по порядку

Артур Бенджамин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Магия математики: Как найти x и зачем это нужно отзывы


Отзывы читателей о книге Магия математики: Как найти x и зачем это нужно, автор: Артур Бенджамин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x