Владимир Скулачёв - Жизнь без старости
- Название:Жизнь без старости
- Автор:
- Жанр:
- Издательство:МГУ им. М.В.Ломоносова
- Год:2014
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Скулачёв - Жизнь без старости краткое содержание
Не исключено, что это только начало пути, и уже в ближайшие годы будет создан препарат, предохраняющий от старости. Чтобы дожить до этого будущего, авторы предлагают 7 принципов, выведенных на основе биологического проникновения в глубинную природу человека. Каждый из принципов понятен и достаточно легко выполним, если вами движет любовь к жизни и своим близким. Следуя этим принципам, можно замедлить генетическую программу старения и заставить свой организм думать, что ему рано стареть.
Прочитайте, приблизьтесь к фонтану молодости — и живите долго!
Жизнь без старости - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
II.1.2. Открытие апоптоза — одного из способов самоубийства клеток многоклеточных организмов
Однако переломным моментом в отношении к старению как программе стали не эти исследования, а прямое доказательство того, что смерть в принципе может быть запрограммирована в геноме живого существа. В этом открытии решающую роль сыграли работы клеточных биологов по запрограммированной гибели клеток многоклеточных организмов. В 1972 г. появилась знаменитая работа Дж. Ф. Керра и сотрудников [150], использовавших для этого явления термин «апоптоз» (в английской транскрипции «apoptosis»). Слово «апоптоз» заимствовано у древнеримского ученого и врача Клавдия Галена [9]. Он обратил внимание на то, что сломанная ветка уходит в зиму, не сбросив листья, которые жухнут, но не опадают. Поэтому листопад — это активный процесс, а не пассивная гибель листьев от холода, как считалось до Галена. Работами многих авторов конца XX века было установлено, что апоптоз — чрезвычайно широко распространенное явление у всех классов многоклеточных (подробнее см. Приложение 1). Апофеозом этих исследований стало обнаружение у червячка Caenorhabditis elegans специальных генов, кодирующих белки, необходимые для апоптоза. Упомянутый червячок — любимый объект биологов, т. к. он прозрачен и состоит всего из около 1000 клеток, причем судьбу каждой клетки удается проследить, наблюдая в световой микроскоп за развитием этого миниатюрного (около 1 мм в длину) существа. Так вот оказалось, что на известных стадиях развития происходит не только увеличение количества размножающихся делением клеток, но и уменьшение этого количества вследствие апоптоза (в общей сложности в апоптоз уходит 60 клеток). Неудивительно, что гены апоптоза оказались среди генов индивидуального развития (онтогенеза) червяка. Так были открыты первые гены смерти (авторы этих работ Х.Р. Хорвиц, Дж. Э. Салстон и С. Бреннер были удостоены Нобелевской премии по физиологии и медицине за 2002 г.).
Что может быть вреднее для живой клетки, чем смерть? И тем не менее, эволюция создала целую систему белков, активация которых ведет к гибели клетки. Так может быть, и смерть от старости запрограммирована? На этот вопрос «пессимисты» отвечают однозначно: одно дело клетки многоклеточного организма и совсем другое — сам организм. Если в процессе онтогенеза какие-то клетки оказались, как у того червяка, лишними, их надо убрать, для чего эволюция и придумала апоптозный механизм, с помощью которого ненужная клетка сама сводит счеты с жизнью.
Однако апоптоз учавствует не только в онтогенезе многоклеточных. Как уже отмечалось в части I, любые клетки организма, чтобы продолжать жить, должны непрерывно получать извне сигнал: «Живи дальше!». Без такого сигнала они быстро уходят в апоптоз.
Итак, в геноме любой клетки многоклеточного организма закодирован механизм её самоликвидации. Этот механизм включается в ситуациях, когда клетка становится ненужной или даже вредной для организма (Подробней о механизмах апоптоза многоклеточных см. Приложение 1).
II.1.3. Запрограммированная смерть одноклеточных
Если апоптоз — изобретение многоклеточных, как думают «пессимисты», то существа, состоящие всего из одной клетки, должны быть лишены «генов смерти» и всего механизма клеточного самоубийства. К сожалению для «пессимистов», такое предположение оказалось ошибочным.
В части I мы уже отмечали, что механизм самоликвидации был обнаружен у дрожжей — одноклеточных представителей царства грибов. Один из видов дрожжей, Saccharomyces cerevisiae, — излюбленный объект клеточных биологов и генетиков. Именно на этом организме было сделано следующее важное открытие.
Пока дрожжам хорошо, они размножаются вегетативно, т. е. простым делением. Это не означает однако, что у дрожжей нет полов. S. cerevisiae двуполы, полы обозначаются буквами а и альфа. Ухудшение внешних условий служит сигналом к переходу на половое размножение. Как и многие другие существа, обладающие половым диморфизмом, дрожжи вырабатывают феромоны — особые вещества, привлекающие особи противоположного пола. У S. cerevisiae феромонами служат два коротких пептида, один из которых выделяется клетками типа a , чтобы привлечь клетки типа альфа, а другой — клетками альфа для привлечения клеток типа a . Известно было, что добавленный к клеткам альфа избыток феромонов, образуемых клетками a , убивает первые, а феромон из клеток альфа делает то же самое, но только с клетками a, т. е. вторая («убийственная») функция феромона сохраняет абсолютную специфичность к половому партнеру. Как показал Ф.Ф. Северин (работа была начата им в лаборатории А. Хаймана в Германии [300] и завершена в нашей группе [266]), механизм гибели дрожжей от феромонов очень похож на апоптоз клеток многоклеточных.
Биологический смысл убийства полового партнера у дрожжей с помощью феромона мог бы состоять в очистке популяции от клеток-«неудачников», склеившихся каким-то образом, не подходящим для передачи ДНК от клетки-донора к клетке-реципиенту. Выполнению «убийственной» функции феромона должно способствовать его длительное выделение в узкую щель между половыми партнерами. Дальнейшая жизнь «неудачников» привела бы к их вегетативному размножению в условиях, когда потребовалось размножение половое с его обменом генетической информацией двух организмов-партнеров [321].
Помимо одноклеточных эукариот существует огромный мир микроорганизмов, также одноклеточных, но устроенных гораздо проще. Это прокариоты: бактерии и археи, мелкие клетки без ядра, митохондрий и других органелл. У данных форм жизни описаны многочисленные случаи самоликвидации, но их механизмы отличаются от таковых у эукариот. В части I мы уже рассмотрели систему типа «долгоживущий токсин — короткоживущий антитоксин». Существенно, что не только нехватка аминокислот [185,86,391], но и субстратов дыхания и кислорода, появление в среде поллютантов — ингибиторов транскрипции, трансляции или энергетического обмена и другие неблагоприятные факторы, тормозящие биосинтез белков, могут включать систему «токсинантитоксин» как последнюю линию защиты бактериальной популяции от полного вымирания [323]. По мнению Лейна [173], массовая гибель водных микроорганизмов при появлении в водоеме вирусов может иметь тот же смысл, имея в виду тактику «выжженной земли» как способ блокировать наступление страшного врага — смертельной инфекции.
Многие грам-отрицательные бактерии располагают особым ферментом — лизиноксидазой, окисляющей аминокислоту лизин молекулярным кислородом, который при этом восстанавливается не до воды (как в случае подавляющего большинства других оксидаз), а до перекиси водорода (Н 2О 2). Последняя ядовита, образуя активные формы кислорода (АФК). Именно Н 2О 2убивает часть бактерий в так называемых биофильмах — пленках, образуемых мириадами слипшихся бактериальных клеток. В результате в биофильме возникают пустоты в виде полых трубок в местах, раньше заполненных бактериями. Эти трубки нужны для обеспечения питательными веществами тех бактерий, которые оказались в толще биофильма. Те же пути используются для удаления из бактерий конечных метаболитов. У грам-положительных бактерий ту же функцию выполняет пируватоксидаза, также образующая не Н 2О, а Н 2О 2. (О роли АФК в запрограммированной смерти эукариот см. раздел II.6).
Читать дальшеИнтервал:
Закладка: