Антон Владзимирский - Медицина в эпоху Интернета. Что такое телемедицина и как получить качественную медицинскую помощь, если нет возможности пойти к врачу
- Название:Медицина в эпоху Интернета. Что такое телемедицина и как получить качественную медицинскую помощь, если нет возможности пойти к врачу
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2020
- Город:Москва
- ISBN:978-5-04-104766-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Антон Владзимирский - Медицина в эпоху Интернета. Что такое телемедицина и как получить качественную медицинскую помощь, если нет возможности пойти к врачу краткое содержание
Но как, когда и кому пришла в голову идея «удаленного» лечения? Когда была зафиксирована первая телемедицинская консультация? И, наконец, какие технологии телемедицины мы можем внедрить в свою жизнь уже сейчас?
Эта книга не учит «лечиться по телевизору» и, конечно же, не призывает превращать процесс лечения в бесконечные телефонные разговоры с докторами. Однако она поможет всем, кто заботится о своем здоровье, делать это быстрее и эффективнее: телемедицина не заменяет врача, но расширяет его возможности.
Внимание! Эта книга не является пособием по самолечению. Перед совершением любых рекомендуемых действий проконсультируйтесь со специалистом.
Медицина в эпоху Интернета. Что такое телемедицина и как получить качественную медицинскую помощь, если нет возможности пойти к врачу - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Так вот, многие технологии и методики mHealth применяются для телемониторинга – дистанционного контроля состояния здоровья. Профессиональные решения, уже прошедшие научные испытания и имеющие сертификацию в качестве медицинских изделий, рассмотрены в предыдущих главах о телемониторинге и контроле хронических болезней. Вместе с тем целый ряд технологий, в основном – носимых устройств, сейчас проходит фазу научных исследований. Назовем их перспективными и поговорим о них более подробно.
Инерционные датчики .Это носимые устройства (в виде клипс, браслетов и т. д.) для оценки изменения расстояния между определенными анатомическими образованиями, попросту говоря, частями тела. Инерционные датчики могут измерить амплитуду движений в суставах, оценить изменение позы, положение тела в пространстве, зафиксировать частоту и характер повторяющихся движений.
Сейчас инерционные датчики используются в научных исследованиях преимущественно в двух группах пациентов: проходящих восстановительное лечение после инсультов или ортопедических операций; у лиц с синдромом или болезнью Паркинсона.
В первом случае пациент выполняет различные упражнения, направленные на разработку суставов, восстановление функций ходьбы, работоспособности кисти и т. д. Инерционные датчики применяются для оценки изменений амплитуды движений как индикатора эффективности реабилитации.
Однако куда более перспективно использование этого типа носимых устройств во второй группе пациентов. Синдром или болезнь Паркинсона – это несколько неврологических патологий, характеризующихся тремором (дрожанием) пальцев и конечностей. Степень такого дрожания зависит от прогресса болезни (вплоть до тяжелой инвалидизации пациента) и эффективности проводимого лечения. Поэтому мониторинг тремора – очень важная и перспективная задача. Для ее решения и пытаются применять носимые устройства с инерционными датчиками. В научных исследованиях уже доказано, что инерционные датчики позволяют достоверно отличать дрожание при болезни Паркинсона от схожих симптомов при других заболеваниях (то есть проводить дифференциальную диагностику), устанавливать тип и характеристики тремора (что важно для мониторинга и коррекции лечения).
Еще с помощью инерционных датчиков можно контролировать осанку.
Цифровая таблетка .Это редкое, но очень интересное и неплохо изученное носимое устройство. Оно предназначено для контроля факта приема лекарства пациентом. В некоторых ситуациях пациенты могут имитировать прием медикаментов, всячески уклоняясь от него. Чаще всего это бывает в психиатрии и при лечении туберкулеза. В причины такого поведения, чреватого серьезным ухудшением состояния здоровья вплоть до фатального исхода, мы вдаваться не будем. Главное, что для решения этой проблемы есть интересная технология, которая состоит из
• дигестивного сенсора – безвредной микросхемы для передачи короткого радиосигнала (сигнатуры) при попадании в кислотную среду желудка (ее помещают внутрь таблетки, а желудочный сок полностью растворяет этот уникальный электронный приборчик);
• нательного датчика – миниатюрного радиоустройства, закрепляемого на теле пациента с помощью обычного пластыря и умеющего «ловить» сигнатуры и ретранслировать их в мобильное приложение;
• смартфона со специальным мобильным приложением у пациента (доверенного лица) и/или врача (данные из каждого приложения еще и передаются в централизованную базу данных).
Итак, при приеме таблетки дигестивный сенсор «ощущает» изменение внешней среды, передает сигнатуру и тут же полностью растворяется в желудочном соке. Нательный датчик получает сигнал, сообщает о нем мобильному приложению. Сообщение о факте приема видит врач в собственном приложении или в централизованной базе данных. Очень прогрессивный подход, повышающий приверженность пациентов к терапии. В научных исследованиях доказана безвредность и эффективность цифровых таблеток у больных с шизофренией, биполярными расстройствами, туберкулезом, достоверно улучшилась своевременность и регулярность приема лекарств, снизилось количество пропусков и отказов от приема лекарств.
Промежуточное положение между профессиональными и перспективными технологиями mHealth занимают трекеры физической активности. Из числа всех носимых устройств эти приборы используются особенно часто. Им посвящены более 40 % научных статей на тему mHealth (ни одна другая технология не приближается к такому количеству публикаций).
Трекеры – это технология, объединяющая механические измерения количества пройденных шагов (шагомер) и математические вычисления разных параметров работы организма на основе этих показаний. Они существуют в виде браслетов, «умных» часов, клипс, и, наконец, трекером может быть сам смартфон с мобильным приложением (в большинстве современных моделей – предустановленным). Вне зависимости от дизайна – будь то простенький пластиковый ободок или «навороченные» smart-watch – суть и функционал у таких устройств одинаковы.
В основе любого такого устройства лежит шагомер, реализованный на основе особого датчика. Этот датчик называют акселерометр, он предназначен для оценки виброускорения. Датчик состоит из массы (миниатюрного груза), закрепленной на пружине. Вследствие ходьбы масса акселерометра отклоняется от первоначального положения, что фиксируется специальной электронной системой. Количество и характер отклонений и преобразуется в количество пройденных шагов. Акселерометры – это довольно точные и надежные устройства. Конечно, их можно обмануть и «натрясти» нужное количество шагов; вот только зачем?
Исходя из количества пройденных шагов, программное обеспечение трекера вычисляет сопряженные показатели: потраченные калории, пройденное расстояние и т. д. Легко понять, что самое точное, что может сообщить об активности трекер, – это количество пройденных шагов. Ну а хуже всего дело обстоит с калориями. Для достоверного вычисления затраченных человеком калорий требуется очень сложное и объемное лабораторное оборудование, которое невозможно «втиснуть» в носимое устройство (во всяком случае, адекватного размера и веса). Так что программное обеспечение трекера руководствуется лишь таблицей соответствия: из классических научных исследований известно, сколько в среднем калорий тратит человек определенного роста и веса на определенный вид работы.
Отдельная функция трекера – это ведение дневника. Именно в таком режиме им фиксируется потребление жидкости, длительность сна (впрочем, она может косвенно вычисляться и с помощью акселерометра по степени активности), эмоциональный фон и т. д.
Читать дальшеИнтервал:
Закладка: