Леонид Букин - Статистика: учебное пособие

Тут можно читать онлайн Леонид Букин - Статистика: учебное пособие - бесплатно ознакомительный отрывок. Жанр: paper-work, издательство 046ebc0b-b024-102a-94d5-07de47c81719, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Статистика: учебное пособие
  • Автор:
  • Жанр:
  • Издательство:
    046ebc0b-b024-102a-94d5-07de47c81719
  • Год:
    2007
  • Город:
    Спб.
  • ISBN:
    978-5-91180-341-4
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Леонид Букин - Статистика: учебное пособие краткое содержание

Статистика: учебное пособие - описание и краткое содержание, автор Леонид Букин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В пособии рассматриваются вопросы, посвященные применению статистических методов в статике и динамике, а также их комплексное применение в различных сочетаниях при изучении макроэкономических показателей, рассматривается методология и построение показателей социально-экономической статистики с учетом международных стандартов. Отдельное внимание уделяется прикладным статистическим методам.

Учебное пособие предназначено для студентов, аспирантов и преподавателей экономических вузов.

Статистика: учебное пособие - читать онлайн бесплатно ознакомительный отрывок

Статистика: учебное пособие - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Леонид Букин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
где Х 1 Х 2 Х 4 отношение двух одноименных величин например цепных - фото 15

где Х 1× Х 2… × … Х 4– отношение двух одноименных величин, например цепных темпов роста; n – численность совокупности отношений темпов роста.

Рассмотренные средние величины обладают свойством маорантности:

Пусть например имеем следующие значения Х 20 40 тогда рассмотренные ранее - фото 16

Пусть, например, имеем следующие значения Х (20; 40), тогда рассмотренные ранее виды средних величин будут равны:

При изучении состава совокупности о типичном размере признака можно судить по - фото 17

При изучении состава совокупности о типичном размере признака можно судить по так называемым структурным средним – моде и медиане.

Модой называется наиболее часто встречающееся значение признака в совокупности. В интервальных вариационных рядах сначала находят модальный интервал. В найденном модальном интервале мода рассчитывается по формуле:

где Х 0 нижняя граница модального интервала d величина интервала f 1 f 2 - фото 18

где Х 0– нижняя граница модального интервала; d – величина интервала; f 1, f 2, f 3 – частоты предмодального, модального и послемодаль-ного интервалов.

Значение моды в интервальном ряду довольно просто можно отыскать на основе графика. Для этого в самом высоком столбце гистограммы от границ двух смежных столбцов проводят две линии. Из точки пересечения этих линий опускают перпендикуляр на ось абсцисс. Значение признака на оси абсцисс и будет модой (рис. 2).

Рис 2 Для решения практических задач наибольший интерес представляет обычно - фото 19

Рис. 2

Для решения практических задач наибольший интерес представляет обычно мода, выраженная в виде интервала, а не дискретным числом. Объясняется это назначением моды, которая должна выявить наиболее распространенные размеры явления.

Средняя – величина, типичная для всех единиц однородной совокупности. Мода – тоже типичная величина, но она определяет непосредственно размер признака, свойственный хотя и значительной части, но все же не всей совокупности. Она имеет большое значение для решения некоторых задач, например для прогнозирования того, какие размеры обуви, одежды должны быть предназначены для массового производства, и т. д.

Медиана – значение признака, находящееся посредине ранжированного ряда. Она указывает на центр распределения единиц совокупности и делит ее на две равные части.

Медиана является лучшей характеристикой центральной тенденции, когда границы крайних интервалов открыты. Медиана является более приемлемой характеристикой уровня распределения и в том случае, если в ряду распределения имеются чрезмерно большие или чрезмерно малые значения, которые оказывают сильное влияние на среднюю величину, а на медиану – нет. Медиана, кроме того, обладает свойством линейного минимума: сумма абсолютных значений отклонений величины признака у всех единиц совокупности от медианы минимальная, т. е.

Статистика учебное пособие - изображение 20

Это свойство имеет большое значение для решения некоторых практических задач – например, для расчета самого короткого из всех возможных расстояний для разных видов транспорта, для размещения станций техобслуживания таким образом, чтобы расстояние до всех обслуживаемых данной станцией машин было минимальным, и т. п.

При отыскании медианы сначала определяется ее порядковый номер в ряду распределения:

Далее соответственно порядковому номеру по накопленным частотам ряда находят - фото 21

Далее, соответственно порядковому номеру, по накопленным частотам ряда находят саму медиану. В дискретном ряду – без всякого расчета, а в интервальном ряду, зная порядковый номер медианы, по накопленным частотам отыскивается медианный интервал, в котором путем простейшего приема интерполяции определяется уже значение медианы. Расчет медианы осуществляется по формуле:

где Х 0 нижняя граница медианного интервала d величина интервала f 1 - фото 22

где Х 0 – нижняя граница медианного интервала; d – величина интервала; f _ 1– частота, накопленная до медианного интервала; f – частота медианного интервала.

Рассчитаем среднюю величину, моду и медиану на примере интервального распределения. Данные приведены в табл. 2.

Таким образом в качестве центра распределения могут быть использованы - фото 23

Таким образом, в качестве центра распределения могут быть использованы различные показатели: средняя величина, мода и медиана,

и каждая из этих характеристик имеет свои особенности Так для средней - фото 24

и каждая из этих характеристик имеет свои особенности. Так, для средней величины характерно то, что все отклонения от нее отдельных значений признака взаимно погашаются, т. е.

Статистика учебное пособие - изображение 25

Для медианы характерно то, что сумма отклонений индивидуальных значений признака от нее (без учета знаков) является минимальной. Мода же характеризует наиболее часто встречающееся значение признака. Поэтому в зависимости от того, какая из особенностей интересует исследователя, и должна выбираться одна из рассмотренных характеристик. В отдельных случаях рассчитываются все характеристики.

Их сравнение и выявление соотношений между ними помогает выяснить особенности распределения того или иного вариационного ряда. Так, в симметричных рядах, как в нашем случае, все три характеристики (средняя, мода и медиана) примерно совпадают. Чем больше расхождение между модой и средней величиной, тем более асимметричен ряд. Установлено, что для умеренно асимметричных рядов разность между модой и средней арифметической примерно в три раза превышает разность между медианой и средней арифметической:

Это соотношение можно использовать для определения одного показателя по двум - фото 26

Это соотношение можно использовать для определения одного показателя по двум известным. Из этого следует, что сочетание моды, медианы и средней важно и для характеристики типа распределения.

1.3. Методы исследования вариации и формы распределения признаков в однородной совокупности

Статистическое описание совокупности было бы неполным, если ограничиться лишь показателями центральной тенденции, т. е. средними величинами, модой и медианой, которые являются равнодействующими ряда изменяющихся значений признака. В одних случаях значение признака концентрируется возле некоторого центра очень тесно, в других случаях наблюдается значительное рассеивание, хотя средняя величина может быть одинаковой. В связи с этим средняя величина как показатель центральной тенденции не дает исчерпывающей характеристики изучаемой совокупности. Возникает необходимость изучения характера рассеивания признака. Хотя отклонения от средней и регулируются общими для всех единиц совокупности причинами, формирующими среднюю, но в то же время они обусловлены и индивидуальными причинами. Например, отклонения производительности труда отдельных рабочих, работающих в одной бригаде, а стало быть, находящихся в одинаковых условиях труда, вызваны не общими условиями и причинами, а индивидуальными обстоятельствами рабочих и их квалификацией, состоянием здоровья, настроением, сообразительностью и т. д. Поэтому изучение отклонений от средней их размеров и закономерности распределения представляет большой интерес для исследователя. Это важно прежде всего для оценки однородности совокупности, которую характеризует данная средняя величина, так как для качественно однородной совокупности характерна вариация в определенных границах. Стало быть, чем меньше вариация, тем качественно однороднее совокупность, тем типичнее и объективнее средняя величина, характеризующая ее.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Леонид Букин читать все книги автора по порядку

Леонид Букин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Статистика: учебное пособие отзывы


Отзывы читателей о книге Статистика: учебное пособие, автор: Леонид Букин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x