БСЭ БСЭ - Большая Советская Энциклопедия (МА)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (МА) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (МА)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (МА) краткое содержание

Большая Советская Энциклопедия (МА) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (МА) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (МА) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Лит.: Курс месторождений неметаллических полезных ископаемых, М., 1969; Требования промышленности к качеству минерального сырья, в. 22 — Кашкаров О. Д., Фивег М. П., Калийные и магнезиальные соли, М., 1963: Смолин П. П., Тенденции использования магнезиального сырья, в сборнике: Неметаллические полезные ископаемые, М., 1971.

П. П. Смолин.

Магниевые сплавы

Ма'гниевые спла'вы,сплавы на основе магния. Наиболее прочные, в том числе и наиболее жаропрочные, М. с. разработаны на основе систем магний — металл с ограниченной растворимостью в твёрдом магнии. Вследствие высокой химической активности магния выбор металлов, пригодных для легирования М. с., сравнительно невелик. М. с. разделяются на 2 основные группы: литейные — для производства фасонных отливок и деформируемые — для производства полуфабрикатов прессованием, прокаткой, ковкой и штамповкой.

Историческая справка. Первые М. с. появились в начале 20 века (под названием «электрон», теперь мало употребляемым). Значение конструкционных промышленных материалов М. с. приобрели в конце 20-х — начале 30-х годов 20 века, то есть почти через 100 лет после того как французский химик А. Бюсси впервые выделил магний в чистом виде (1828). До конца 40-х годов применялись главным образом сплавы на основе систем Mg — Al — Zn и Mg — Mn. Дальнейшему прогрессу в области создания М. с. способствовало открытие модифицирующего и рафинирующего действия циркония. В 50-х годах начали применяться сплавы на основе систем Mg — Zn — Zr, Mg — p. з. м. (редкоземельный металл) — Zr (или Mn), Mg — Th, а также сверхлёгкие сплавы на основе системы Mg — Li. Производство и потребление магния и М. с. возрастает. Мировое производство магния к началу 2-й мировой войны 1939—45 составило около 50 тысяч т, в 1969 ~ 2 млн. т, из них ~ 40—50% расходуется на производство отливок и деформированных полуфабрикатов.

Химический состав наиболее широко применяемых в СССР М. с. дан в таблице 1. В промышленных М. с. содержатся добавки Al, Zn, Mn, Zr и редкоземельных металлов (цериевый мишметалл, La, Nd, Y), Th, Ag, Cd, Li, Be и др. Общее количество добавок в наиболее легированных М. с. достигает 10—14%. Вредными примесями являются Ni, Fe, Si и Cu, которые снижают коррозионную стойкость М. с. В М. с. с Zr ограничивают содержание примесей Al и Si, так как в присутствии этих элементов Zr не растворяется в расплавленном магнии, образуя с ними тугоплавкие нерастворимые соединения. Растворимость циркония в магнии уменьшают также примеси Fe, Mn и Н. Малые количества Be (иногда Ca) используют в качестве технологических добавок для снижения окисляемости М. с. в расплавленном состоянии.

Таблица 1. – Химический состав и механические свойства наиболее широко применяемых в СССР магниевых сплавов (1 Мн/м 2 = 0,1 кгс/мм 2 )

Тип сплава Химический состав, %
основные компоненты примеси, не более
Al Zn Mn Zr Nd Al Si Fe Ni Cu Mn Be Ca
Литейные сплавы
Mg – Al – Zn 8 0,5 0,2 0,25 0,06 0,01 0,1 0,002 0,1
8 0,5 0,2 0,08 0,007 0,001 0,004 0,002
Mg – Zn – Zr 4,5 0,7 0,02 0,03 0,01 0,005 0,03 0,001
Mg – Nd – Zr 0,4 0,7 2,5 0,02 0,03 0,01 0,005 0,03 0,001
Деформируемые сплавы
Mg – Al – Zn 4 1 0,5 0,15 0,05 0,005 0,05 0,02 0,1
Mg – Zn – Zr 5,5 0,5 0,05 0,05 0,05 0,005 0,05 0,1 0,02
Тип сплава Сумма определяемых примесей Механические свойства при 20 °C Вид термической обработки Предельные рабочие температуры, °C Назначение
Мн/м 2 s, % длительно Кратко времен- но
s 0,2 s b
Литейные сплавы
Mg – Al – Zn 0,5 90 280 9 Закалка; закалка и старение 150 250 Сплав общего назначения
0,14 90 280 9 То же 150 250 То же, имеет повышенную коррозионную стойкость
Mg – Zn – Zr 0,2 150 300 6 Отпуск 200 250 Нагруженные детали (барабаны колёс, реборды и др.)
Mg – Nd – Zr 0,2 150 280 5 Закалка и старение 250 350 Жаропрочный сплав. Нагруженные детали; детали, требующие высокой герметичности, стабильности размеров
Деформируемые сплавы
Mg – Al – Zn 0,3 1 180 290 100 Отжиг 150 200 Панели, штамповки сложной конструкции, сварные конструкции
Mg – Zn – Zr 0,3 1 250 – 300 2 310 – 350 2 100–140 Старение 100 150 Высоконагруженные детали из прессованных полуфабрикатов, штамповок и поковок

1Для деформируемых сплавов указано содержание прочих примесей.

2Максимальные значения – для пресcованных полуфабрикатов.

Физические свойства М. с. даны в таблице 2. М. с. являются самым лёгким металлическим конструкционным материалом. Плотность ( d ) М. с. в зависимости от состава колеблется в пределах 1360—2000 кг/м 3. Наименьшую плотность имеют магний-литиевые сплавы. Плотность наиболее широко применяемых М. с. равна 1760—1810 кг/м 3, то есть примерно в 4 раза меньше плотности стали и в 1,5 раза меньше плотности алюминиевых сплавов. Благодаря малой плотности детали из М. с. обладают высокой жёсткостью: относительная жёсткость при изгибе двутавровых балок одинаковой массы и ширины для стали равна 1, для алюминия 8,9, для магния 18,9. М. с. имеют высокую удельную теплоёмкость. Температура поверхности детали из М. с. при одинаковом количестве поглощённого тепла в 2 раза ниже по сравнению с температурой детали из малоуглеродистой стали и на 15—20% ниже, чем детали из алюминиевого сплава. Коэффициент термического расширения М. с. в среднем на 10—15% больше, чем у алюминиевых сплавов.

Таблица 2. – Физические свойства наиболее широко применяемых в СССР магниевых сплавов

Тип сплава Плотность, кг/м 3 Коэффициент линейного расширения при 20—100 °C a·10 6, 1/°C Коэффициент теплопроводности, вт/м·K Удельная теплоёмкость, кдж/кг·K Удельное электро- сопротивление r·10 6, ом·см
Литейные сплавы
Mg – Al – Zn 1810 26,8 65 1,05 13,4
Mg – Zn – Zr 1810 26,2 134 0,98 6,6
Mg – Nd – Zr 1780 27,7 113 0,963 8,4
Деформируемые сплавы
Mg – Al – Zn 1790 26 83,8 1,05 12
Mg – Zn – Zr 1800 20,9 117 1,03 5,65

Механические свойства наиболее широко применяемых в СССР промышленных М. с. представлены в таблице 1. Максимальный уровень механических свойств литейных М. с. достигнут на высокопрочных сплавах системы Mg — Zn — Ag — Zr: предел текучести s 0,2= 260—280 Мн/м 2 (26—28 кгс/мм 2 ) , предел прочности s b= 340—360 Мн/м 2 (34—36 кгс/мм 2 ) , относительное удлинение d = 5%. Специальные технологические приёмы (например, подштамповка) позволяют увеличить s b до 400—420 Мн/м 2 (40—42 кгс/мм 2 ). Уровень свойств самых высокопрочных деформируемых М. с.: s 0,2= 350 Мн/м 2 (35 кгс/ мм 2 ) , s b= 420 Мн/м 2 (42 кгс/мм 2 ) , d = 5%. Предельная рабочая температура высокопрочных сплавов 150 °С. Самые жаропрочные М. с. (литейные и деформируемые) систем Mg — р. з. м. и Mg — Th пригодны для длительной эксплуатации при 300—350 °С и кратковременной — до 400 °С. По удельной прочности (s b/ d ) высокопрочные литейные М. с. имеют преимущества по сравнению с алюминиевыми сплавами, самые высокопрочные деформируемые находятся на одном уровне с наиболее высокопрочными деформируемыми алюминиевыми сплавами (или несколько уступают им). Модуль упругости М. с. равен 41—45 Гн/м 2 (4100—4500 кгс/мм 2 ) ( 3/ 5модуля алюминиевых сплавов, 1/ 5модуля сталей), модуль сдвига составляет 16—16,5 Гн/м 2 (1600—1650 кгс/мм 2 ) . При низких температурах модуль упругости, пределы текучести и прочности М. с. увеличиваются, а удлинение и ударная вязкость снижаются; резкого падения пластичности, характерного для низколегированных конструкционных сталей, у М. с. не наблюдается.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (МА) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (МА), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x