Питер Макоуэн - Вычислительное мышление: Метод решения сложных задач

Тут можно читать онлайн Питер Макоуэн - Вычислительное мышление: Метод решения сложных задач - бесплатно ознакомительный отрывок. Жанр: Справочники, издательство Альпина Паблишер, год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Вычислительное мышление: Метод решения сложных задач
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-9614-5020-0
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Питер Макоуэн - Вычислительное мышление: Метод решения сложных задач краткое содержание

Вычислительное мышление: Метод решения сложных задач - описание и краткое содержание, автор Питер Макоуэн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Вычислительное мышление – это мощный инструмент для решения задач и понимания мира. Оно лежит в основе программирования, благодаря ему ученые решают задачи в области информатики, но его же можно использовать и для решения повседневных проблем. Оно настолько важно, что во многих странах его стали преподавать в школе. Но в чем же его суть?
Если вы хотите узнать больше о вычислительном мышлении, ищете новые способы стать эффективнее и любите математические игры и головоломки, эта книга для вас. В то же время вы научитесь навыкам, необходимым для программирования и создания новых технологий. Даже если вы не планируете писать программы и изобретать, вы сможете применять навыки вычислительного мышления, чтобы справиться с любыми жизненными проблемами.

Вычислительное мышление: Метод решения сложных задач - читать онлайн бесплатно ознакомительный отрывок

Вычислительное мышление: Метод решения сложных задач - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Питер Макоуэн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Соответственно в последний шестиугольник надо поставить 3 поскольку в этой - фото 24

Соответственно, в последний шестиугольник надо поставить 3, поскольку в этой области должны стоять числа 1–4 и недостает только 3. Решение целиком показано на рис. 19.

Мы разгадали головоломку И сделали это исходя из двух правил и исходных - фото 25

Мы разгадали головоломку. И сделали это, исходя из двух правил и исходных данных — известных чисел. Основываясь на них, мы многократно выявляли новые факты в этой головоломке. Мы прибегли к особому виду логических рассуждений, называемому дедукцией,который позволяет с помощью известных фактов и правил мироустройства (в данном случае — правил головоломки) получать новые факты. Считается, что именно так Шерлок Холмс творил свои детективные чудеса. Он подмечал разные детали в людях и ситуациях, а потом с помощью дедукции выводил новые факты, которые являлись следствием этих деталей. Чем больше фактов он узнавал, тем дальше мог продвинуться в дедукции, что и позволяло в конечном итоге раскрывать преступления. Ученые-информатики и математики используют похожий метод. Хорошие программисты обращаются именно к дедукции, чтобы убедиться в бесперебойной работе своих программ.

Выводим правила

Сопоставляем с образцом и создаем правила

До сих пор мы выводили факты непосредственно из двух правил. Но решив много головоломок и обретя опыт, мы берем на вооружение другой подход — используем естественные навыки вычислительного мышления, например сопоставление с образцомиз ранее встречавшихся ситуаций. Этот метод позволяет решать головоломки быстрее и тратить меньше времени на их обдумывание. Следующий шаг — обобщение, то есть для поиска образцов мы расширяем круг ситуаций, а не возвращаемся к уже известным. При наличии опыта мы начинаем создавать новые, ускоренные и универсальные правила, которые позволяют вести логические рассуждения на более высоком уровне. Это становится возможным благодаря использованию логического мышленияне с целью решить конкретную головоломку, как мы делали до сих пор, но с целью создать новые правила. При этом мы уверены, что эти новые правила гарантированно выведены из основных. Давайте посмотрим, о чем идет речь, на некоторых примерах.

Правило одного шестиугольника

Вернемся к решению предыдущей головоломки. Мы выяснили, что, если в области содержится только один шестиугольник, в нем должна стоять 1. Это следует непосредственно из первого правила. Осознав, что нет необходимости снова это обдумывать, мы можем из начального правила вывести новое.

3. ЕСЛИв области есть только один шестиугольник, ТОв нем может стоять только 1.

Чтобы наглядно представить это правило и не ограничиваться словами, мы набросаем схему (рис. 20). Стрелка показывает, какие изменения мы вносим в улей. Слева изображена позиция сопоставления с образцом, а справа — вносимые изменения, если найдем образец. Подобные правила называются порождающими правилами, правилами логического выводаили правилами подстановки.Наше правило в виде схемы показывает, что если мы найдем пустой участок в один шестиугольник, то можем преобразовать его в шестиугольник с 1.

Теперь можно применять это правило даже не задумываясь почему оно работает - фото 26

Теперь можно применять это правило, даже не задумываясь, почему оно работает. Наше логическое мышление теперь оперирует на более высоком уровне, по крайней мере в такой простой ситуации.

Правило двух шестиугольников

Теперь выведем еще одно новое правило для областей, состоящих из двух шестиугольников. Мы видели, что если есть область из двух шестиугольников и в одном стоит 2, то во второй нужно поставить 1 (рис. 21).

Мы вправе рассматривать это как обобщенноеправило из конкретного примера нашей - фото 27

Мы вправе рассматривать это как обобщенноеправило из конкретного примера нашей головоломки. Не важно, в каком шестиугольнике стоит 2, — логика не меняется. Даже если картинку перевернуть, правило останется прежним. Это правило применимо и к шестиугольникам, соприкасающимся по диагонали в любом направлении. Но обобщение можно продолжить. По той же логике, если в области из двух шестиугольников в одном уже стоит 1, в другой нужно поставить 2. Это показано на рис. 22.

Объединив два эти отдельные правила мы получаем полное обобщенное правило 4 - фото 28

Объединив два эти отдельные правила, мы получаем полное обобщенное правило:

4. ЕСЛИодин шестиугольник в области из двух содержит 1 или 2,

ТОв другом шестиугольнике будет второе число из этих двух.

Правило можно представить в виде схемы, где xбудет обозначать любое число (точно так же, как математики используют xи yдля обозначения переменных в алгебре).

В одном случае xзаменяет 1 а в другом 2 но замена остается неизменной в - фото 29

В одном случае xзаменяет 1, а в другом — 2, но замена остается неизменной в рамках одного примера. Схема правила приведена на рис. 23. На схеме xобозначает другое число. То есть если x — это 1, то x —это 2 и если x — это 2, то x —1. Это правило подходит для области из двух шестиугольников, повернутой в любую сторону, и не важно, какое число стоит наверху, а какое — внизу. Схема превращается в одно из изначальных правил (и их схем), если заменить xна 1 или 2. Так мы начали изобретать своего рода математические обозначения, которые используются с той же целью, что и символы в математике. Они дают возможность говорить о вещах с большой точностью, и это важно, так как по мере усложнения правил надо стараться избегать возможных ошибок.

Вместо того чтобы выводить новые факты из заданных фактов, используя исходные правила решения головоломки, мы теперь выводим новые, «более крупные» правила с учетом исходных. Это называется производные правила логического вывода.Когда мы видим ситуацию, соответствующую образцу из какого-то нового правила, мы уже не думаем, почему оно верно, а просто применяем его. Мы абстрагировалисьот обоснования, стоящего за правилом.

Правило угла

Давайте рассмотрим последний пример создания более общего правила на базе нашего для решения простой головоломки. Оказывается, он весьма полезен. Мы поняли, куда поставить 1 в области из четырех шестиугольников в нижнем углу. Это было возможно, потому что в прилегающей области уже стояла 1, устроившаяся в углу, как показано на рис. 24.

Единицу нужно поставить в позицию a b c или d рис 24 Однако в - фото 30

Единицу нужно поставить в позицию a, b, c или d (рис. 24). Однако в соответствии со вторым правилом головоломки рядом не должна находится ячейка с 1. Значит, позиции b и с исключаются. Остается только позиция d, и только туда получается поставить 1. Мы можем изобразить этот этап в виде схемы для правила замены (рис. 25).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Питер Макоуэн читать все книги автора по порядку

Питер Макоуэн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вычислительное мышление: Метод решения сложных задач отзывы


Отзывы читателей о книге Вычислительное мышление: Метод решения сложных задач, автор: Питер Макоуэн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x