Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике
- Название:Ответы на экзаменационные билеты по эконометрике
- Автор:
- Жанр:
- Издательство:Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике краткое содержание
Настоящее издание представляет собой учебное пособие и подготовлено в соответствии с государственным образовательным стандартом. Пособие составлено в виде ответов на экзаменационные билеты по дисциплине «Эконометрика».
Данное издание написано доступным языком и содержит всю необходимую информацию, достаточную для ответа на экзамене по данной дисциплине и успешной его сдачи.
Настоящие пособие предназначено для студентов высших и средних специальных учебных заведений.
Ответы на экзаменационные билеты по эконометрике - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В дополнение к выборочным коэффициентам асимметрии и эксцесса рассчитывают показатели среднеквадратических отклонений данных коэффициентов по формулам:

Если одновременно выполняются следующие неравенства:
1) |КА|≤1,5G(A);
2) |КЭ|≤1,5G(Э),
то гипотеза о нормальном характере распределения случайной компоненты принимается. Если хотя бы одно из указанных неравенств нарушается, то гипотеза о нормальном распределении остатков отвергается.
Помимо адекватности выбранной модели, необходимо охарактеризовать её точность. Наиболее простым критерием точности модели является относительная ошибка, рассчитываемая по формуле:

Если относительная ошибка равна менее, чем 13 %, то точность подобранной модели признаётся удовлетворительной.
76. Сезонные и циклические компоненты временного ряда
Для построения адекватной модели временного ряда необходимо охарактеризовать сезонные и циклические компоненты временного ряда. К основным методам моделирования сезонных и циклических колебаний относятся:
1) метод вычисления сезонной компоненты и построение аддитивной или мультипликативной модели временного ряда;
2) метод применения сезонных фиктивных переменных;
3) метод анализа сезонных колебаний с помощью автокорреляционной функции;
4) метод, основанный на использовании одномерных рядов Фурье.
В связи с тем, что моделирование сезонных и циклических колебаний происходит аналогично, применение данных методов мы будем рассматривать на примере моделирования сезонных колебаний.
Аддитивная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний не меняется во времени:
yt=Tt+St+εt,
где T – это трендовая компонента;
S – это сезонная компонента;
ε – случайный шум.
Мультипликативная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний изменяется во времени:
yt=Tt*St+εt.
Предположим, что задача состоит в исследовании временного ряда Xij , где i – это номер сезона (периода времени внутри года, например, месяца или квартала),

L – число сезонов в году, j – номер года,

m – общее количество лет. Количество уровней исходного временного ряда равно n=L*m .
Прежде чем рассчитывать сезонную компоненту, исходный временной ряд необходимо выровнять. Для этого применяются методы механического выравнивания, к которым относятся:
1) метод скользящих средних;
2) метод экспоненциального сглаживания;
3) метод медианного сглаживания и др.
Результатом процедуры сглаживания будет временной ряд выровненных значений

не содержащих сезонной компоненты.
Если временной ряд представлен аддитивной моделью, то в качестве сезонной компоненты используется показатель абсолютного отклонения – Sai . Сумма всех сезонных компонент, т.е. показателей абсолютных отклонений Sai . должна быть равна нулю.
Если временной ряд представлен мультипликативной моделью, то в качестве сезонной компоненты используется индекс сезонности – Isi . Произведение всех сезонных компонент, т. е. индексов сезонности Isi , должно быть равно единице.
Показатель абсолютного отклонения в i-том сезоне рассчитывается как среднее арифметическое из отклонений фактического и выровненного уровней временного ряда:

Индекс сезонности в i-том сезоне рассчитывается как среднее арифметическое из отношений фактического уровня временного ряда к выровненному:

Если при построении аддитивной модели временного ряда сумма всех абсолютных отклонений не равна нулю, то рассчитываются скорректированные значения сезонных компонент по формуле:

где L – общее количество сезонных компонент.
На следующем этапе построения модели временного ряда осуществляется расчёт трендовой компоненты с помощью метода аналитического выравнивания функциями времени или кривыми роста. Данный метод выравнивания применяют не к исходному временному ряду, а к временному ряду с исключённой сезонной компонентой. При этом уровни исходного временного ряда корректируются на величину сезонной компоненты следующим образом:
1) для аддитивной модели из исходных уровней вычитаются показатели абсолютных отклонений Sai ;
2) для мультипликативной модели уровни исходного временного ряда делятся на индексы сезонности Isi .
77. Сезонные фиктивные переменные
Метод сезонных фиктивных переменных относится к методам моделирования сезонных компонент временного ряда. Суть данного метода заключается в построении модели регрессии, которая наряду с фактором времени включает сезонные фиктивные переменные.
Фиктивной переменной(dummy variable) называется атрибутивный или качественный фактор, представленный с помощью определённого цифрового кода.
Моделью регрессии с переменной структуройназывается модель регрессии, включающая в качестве факторной (факторных) переменных фиктивную переменную.
Предположим, что задача состоит в исследовании временного ряда Xij , где i – это номер сезона (периода времени внутри года, например, месяца или квартала),

L – число сезонов в году, j – номер года,

m – общее количество лет. Количество уровней исходного временного ряда равно n=L*m .
При построении модели регрессии с переменной структурой необходимо учитывать, что число сезонных фиктивных переменных всегда должно быть на единицу меньше сезонов внутри года, т. е. должно быть равно величине L-1 . Например, при моделировании годовых данных модель регрессии помимо фактора времени должна содержать одиннадцать фиктивных компонент (12-1). При моделировании поквартальных данных модель регрессии должна содержать три фиктивные компоненты (4-1) и т. д.
Читать дальшеИнтервал:
Закладка: