Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике
- Название:Ответы на экзаменационные билеты по эконометрике
- Автор:
- Жанр:
- Издательство:Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике краткое содержание
Настоящее издание представляет собой учебное пособие и подготовлено в соответствии с государственным образовательным стандартом. Пособие составлено в виде ответов на экзаменационные билеты по дисциплине «Эконометрика».
Данное издание написано доступным языком и содержит всю необходимую информацию, достаточную для ответа на экзамене по данной дисциплине и успешной его сдачи.
Настоящие пособие предназначено для студентов высших и средних специальных учебных заведений.
Ответы на экзаменационные билеты по эконометрике - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
а) модель авторегрессии;
б) модель с распределённым лагом.
Моделью авторегрессииназывается динамическая эконометрическая модель, в которой в качестве факторных переменных содержатся лаговые значения результативной переменной.
Пример модели авторегрессии:
yt=β0+β1xt+δ1yt–1+εt.
Моделью с распределённым лагомназывается динамическая эконометрическая модель, в которую включены не только текущие, но и лаговые значения факторных переменных.
Пример модели с распределённым лагом:
yt=β0+β1xt+β2xt–1+…+βLxt–L+εt.
где L – это величина временного лага (запаздывания) между рядами;
3) динамические модели, в которые входят переменные, отражающие предполагаемый или желаемый уровень результативной переменной или одной из факторных переменных в определённый момент времени ( t+1 ). Величина желаемого уровня является неизвестной и рассчитывается на основании той информации, которая имеется в наличии на предшествующий момент времени ( t ). В зависимости от способа расчёта желаемых переменных различают следующие виды моделей:
а) модель адаптивных ожиданий (МАО);
б) модель частичной (неполной) корректировки (МЧК)
Моделью адаптивных ожиданийназывается динамическая эконометрическая модель, которая учитывает предполагаемое или желаемое значение факторной переменной

Общий вид модели адаптивных ожиданий:

Примером модели адаптивных ожиданий является модель зависимости предполагаемой в будущем периоде ( t+1 ) индексации заработных плат и пенсий на текущие цены.
Моделью частичной (неполной) корректировкиназывается динамическая эконометрическая модель, которая учитывает предполагаемое (или желаемое) значение результативной переменной

Общий вид модели частичной корректировки:

Примером модели частичной корректировки является модель Литнера, которая отражает зависимость желаемого объёма дивидендов

от фактического текущего объёма прибыли xt .
Неизвестные коэффициенты динамических эконометрических моделей нельзя рассчитать с помощью традиционного метода наименьших квадратов, потому что они не будут удовлетворять свойствам несмещённости, состоятельности и эффективности.
Неизвестные коэффициенты моделей авторегрессии оцениваются с помощью метода инструментальных переменных.
Для моделей с распределённым лагом в зависимости от структуры лага для оценивания неизвестных коэффициентов применяются метод Алмон и метод Койка. Суть данных методов состоит преобразовании исходной модели с распределённым лагом к модели авторегрессии, оценки неизвестных параметров которой можно рассчитать с помощью метода инструментальных переменных.
Для определения оценок неизвестных коэффициентов модели адаптивных ожиданий и модели частичной корректировки их также преобразуют в модели авторегрессии.
95. Модели авторегрессии
Моделью авторегрессииназывается динамическая эконометрическая модель, в которой в качестве факторных переменных содержатся лаговые значения результативной переменной.
Пример модели авторегрессии:
yt=β0+β1xt+δ1yt–1+εt,
где β1 – это коэффициент, который характеризует краткосрочное изменение переменной у под влиянием изменения переменной х на единицу своего измерения;
δ1 – это коэффициент, который характеризует изменение переменной у в текущий момент времени t под влиянием своего изменения в предыдущий момент времени ( t–1 ).
Промежуточным мультипликаторомназывается произведение коэффициентов модели авторегрессии ( β1 * δ1) .
Промежуточный мультипликатор отражает общее абсолютное изменение результативной переменной у в момент времени ( t+1 ).

Определение. Долгосрочным мультипликатором называется показатель, рассчитываемый как
Долгосрочный мультипликатор отражает общее абсолютное изменение результативной переменной у в долгосрочном периоде.
Если для модели авторегрессии выполняется условие | δ|<1 , то при наличии бесконечного лага будет справедливым равенство:

В нормальной линейной модели регрессии все факторные переменные не зависят от случайной ошибки модели. Данное условие для моделей авторегрессии нарушается, потому что переменная yt-1 частично зависит от случайной ошибки модели εt . Следовательно, при оценке неизвестных коэффициентов традиционным методом наименьших квадратов ы получим смещённую оценку коэффициента при переменной yt –1 .
При определении оценок неизвестных коэффициентов модели авторегрессии используется метод инструментальных переменных (IV – Instrumental variables).
Суть метода инструментальных переменных заключается в том, что переменная yt –1 , для которой нарушается предпосылка применения метода наименьших квадратов, заменяется на новую переменную z, удовлетворяющую двум требованиям:
1) данная переменная должна тесно коррелировать с переменной yt–1 : cov(yt–1,z)≠0 ;
2) данная переменная не должна коррелировать со случайной ошибкой модели εt : cov(z,ε)=0 .
Предположим, что на основании собранных данных была построена модель авторегрессии вида:
yt=β0+β1xt+δ1yt–1+εt.
Рассчитаем оценки неизвестных коэффициентов данной модели с помощью метода инструментальных переменных.
В данной модели авторегрессии переменная yt коррелирует с переменной xt , следовательно, переменная yt –1 зависит от переменной xt –1 . Охарактеризуем данную корреляционную зависимость с помощью парной модели регрессии вида:
yt–1=k0+k1xt–1+ut ,
где k0 ,k1 – неизвестные коэффициенты модели регрессии;
ut – случайная ошибка модели регрессии.
Обозначим выражение k0+k1xt–1 через переменную zt –1 . Тогда модель регрессии для переменной yt –1 примет вид:
Читать дальшеИнтервал:
Закладка: