Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике
- Название:Ответы на экзаменационные билеты по эконометрике
- Автор:
- Жанр:
- Издательство:Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике краткое содержание
Настоящее издание представляет собой учебное пособие и подготовлено в соответствии с государственным образовательным стандартом. Пособие составлено в виде ответов на экзаменационные билеты по дисциплине «Эконометрика».
Данное издание написано доступным языком и содержит всю необходимую информацию, достаточную для ответа на экзамене по данной дисциплине и успешной его сдачи.
Настоящие пособие предназначено для студентов высших и средних специальных учебных заведений.
Ответы на экзаменационные билеты по эконометрике - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
yt–1= zt–1+ut .
Новая переменная zt –1 удовлетворяет свойствам, предъявляемым к инструментальным переменным:
1) она тесно коррелирует с переменной yt–1 : cov(zt–1,yt–1)≠0;
2) она коррелирует со случайной ошибкой исходной модели авторегрессии εt : cov(εt, zt–1).
Таким образом, исходная модель авторегрессии может быть представлена следующим образом:
yt=β0+β1xt+δ1(k0+k1xt–1+ut)+εt= β0+β1xt+δ1 zt–1+νt,
где νt= δ1 ut+ εt .
На следующем этапе оценки неизвестных коэффициентов преобразованной модели рассчитываются с помощью традиционного метода наименьших квадратов. Эти оценки будут являться оценками неизвестных коэффициентов исходной модели авторегрессии.
96. Модели с распределённым лагом
Моделью с распределённым лагомназывается динамическая эконометрическая модель, в которую включены не только текущие, но и лаговые значения факторных переменных.
С помощью модели с распределённым лагом можно охарактеризовать влияние изменения факторной переменной х на дальнейшее изменение результативной переменной у , т. е. изменение х в момент времени t будет оказывать влияние на значение переменной у в течение L следующих моментов времени.
Пример модели с распределённым лагом:
yt=β0+β1xt+β2xt–1+…+βLxt–L+εt.
Краткосрочным мультипликаторомназывается коэффициент β1 модели с распределённым лагом
Краткосрочный мультипликатор характеризует среднее абсолютное изменение переменной yt при изменении переменной xt на единицу своего измерения в конкретный момент времени t при элиминировании влияния лаговых значений переменной х .
Коэффициент β 2 модели с распределённым лагом характеризует среднее абсолютное изменение переменной yt в результате изменения переменной х на единицу своего измерения в момент времени t–1 .
Промежуточным мультипликаторомназывается сумма коэффициентов β1 и β 2 модели с распределённым лагом.
Промежуточный мультипликатор характеризует совокупное влияние факторной переменной х на переменную у в момент времени ( t+1 ). Таким образом, изменение переменной х на единицу в момент времени t вызывает изменение переменной у на β1 единиц в момент времени t и изменение переменной у на β 2 в момент времени ( t+1 ).
Средним лагом называется средний период времени, в течение которого будет происходить изменение результативной переменной у под влиянием изменения факторной переменной х в момент t:

Если величина среднего лага небольшая, то переменная у достаточно быстро реагирует на изменение факторной переменной х .
Если величина среднего лага большая, то факторная переменная х медленно воздействует на результативную переменную у.
Медианным лагомназывается период времени, в течение которого с момента начала изменения факторной переменной х будет реализована половина её общего воздействия на результативную переменную у .
Оценки неизвестных коэффициентов модели с распределённым лагом традиционным методом наименьших квадратов рассчитать нельзя по трём причинами:
1) нарушение первого условия нормальной линейной модели регрессии, т. е. наличие корреляции между текущими и лаговыми значениями факторной переменной;
2) при большой величине лага L уменьшается количество наблюдений, по которым строится модель регрессии и увеличивается число факторных переменных ( xt,xt–1,xt–2,… ), что в конечном результате ведёт к потере числа степеней свободы в модели;
3) наличие проблема автокорреляции остатков.
Данные причины в итоге ведут к нестабильности оценок коэффициентов регрессии, вычисленных с помощью метода наименьших квадратов.
Оценки неизвестных коэффициентов моделей с распределённым лагом рассчитывают с помощью специальных методов, чаще всего с использованием метода Алмон и метода Койка.
97. Метод Алмон
Для оценки неизвестных коэффициентов модели с распределённым лагом применяется метод Алмон или лаги Алмон.
Данный метод можно применять к моделям, которые характеризуются полиномиальной структурой лага и конечной величиной лага L :
yt=β0+β1xt+β2xt–1+…+βLxt–L+εt. (1)
Структура лага определяется графическим методом при отражении зависимости параметров при факторных переменных от величины лага.
Алгоритм метода Алмон реализуется в несколько этапов:
Суть метода Алмон состоит в следующем:
1) зависимость коэффициентов при факторных переменных βi от величины лага i аппроксимируется полиномиальной функцией:
а) первого порядка βi=c0+c1*i
б) второго порядка

в) третьего порядка

г) в общем случае полиномиальной функцией порядка P:

Алмон доказал, рассчитать оценки коэффициентов

намного проще, чем найти оценки непосредственно коэффициентов βi. Подобный метод оценивания коэффициентов βi называется полиномиальной аппроксимацией.
2) каждый коэффициент модели (1) можно выразить следующим образом:
β1=c0;
β2=c0+c1+…+cP;
β3=c0+2c1+4c2+…+2PcP;
β4=c0+3c1+9c2+…+3PcP;
…
βL=c0+Lc1+L2c2+…+LPcP.
Подставим полученные выражения для коэффициентов β i в модель (1):
yt=β0+c0xt+( c0+c1+…+cP)xt–1+…+( βL=c0+Lc1+L2c2+…+LPcP)xt–L+εt.
3) в полученном выражении перегруппируем слагаемые:

Обозначим слагаемые в скобках при коэффициентах

как новые переменные:

С учётом новых переменных модель примет вид:
yt=β0+c0z0+c1z1+…+cPzP+εt. (2)
4) оценки неизвестных коэффициентов модели (2) можно рассчитать с помощью традиционного метода наименьших квадратов. Далее на основе полученных оценок коэффициентов
Читать дальшеИнтервал:
Закладка: