Исай Давыдов - Бытие
- Название:Бытие
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2005
- ISBN:0-9630594-5-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Исай Давыдов - Бытие краткое содержание
В структуре всего Относительного Мира существуют в высшей степени гармония и порядок, установленные Абсолютным Богом. Чтобы построить рай на Земле, человечество обязано вписаться в эту гармонию. В противном случае его ждет неизбежная катастрофа.
Бытие - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Живое и неживое.
Живой объект, обладающий волей и способный сделать выбор, может использовать оба измерения двухмерного пространства. У неживого объекта нет никакой воли и никаких возможностей сделать осознанный выбор. Его движение однозначно зависит от внешних условий, законов и программ, а не от него самого. Поэтому неживой объект может и обязан реализовать всего лишь одну единственную степень «свободы», которая по сути дела является для него необходимостью. Например, закон Ньютона предписывает шарику находиться в состоянии покоя или равномерного прямолинейного движения до тех пор, пока внешние силы не выведут его из этого состояния. Поэтому шарик покатится туда, куда его ударят. Биллиардный столик можно себе представить как двухмерное пространство, в котором живой цыпленок имеет две степени свободы, а неживой шарик согласно закону Ньютона – одну степень необходимости.
Живой объект обладает в двухмерном пространстве одной или двумя степенями свободы, а неживой – всего лишь одной степенью неосознанной необходимости. «Точечный интеллектуал», который находится в точке пересечения двух и более прямых, может перемещаться из одной прямой в любую другую прямую и обладает поэтому множеством степеней свободы. Количество степеней его свободы равно количеству прямых, пересекающихся в одной точке. Таким образом, в двухмерном пространстве «неживой объект» обладает одной степенью необходимости, «живой объект» – одной или двумя степенями свободы, а «точечный интеллектуал» – сколь угодно большим количеством степеней свободы.
Бесконечно большое и бесконечно малое.
В любом ограниченном участке двухмерного пространства можно разместить сколь угодно большое количество прямых, толщина которых равна нулю. Это значит, что двухмерное пространство является бесконечно большим в отношении одномерного пространства, а одномерное пространство является бесконечно малым в отношении двухмерного пространства. Но это вовсе не означает, что два двухмерных пространства являются якобы одним четырехмерным пространством. Две параллельные, независимые друг от друга плоскости вовсе не представляют собой четырехмерное или даже трехмерное пространство, ибо точечный объект не может перемещаться из одной такой плоскости в другую плоскость, как бы близко они ни располагались.
Относительность пространства
Двухмерное пространство является относительной категорией, ибо любая конечная сколь угодно малая в нашем представлении протяженность этого пространства представляется бесконечно большой для точечных объектов, существующих в нем.
Дырки в пространстве.
Чтобы выйти из двухмерного пространства в одномерное пространство или в третье измерение трехмерного пространства, плоский объект должен сократить свою длину и ширину до идеального нуля и пробить в своем двухмерном пространстве «точечную дырку». Иначе ему пришлось бы пробивать «плоскую дырку», а это гораздо сложнее, потому что любая площадка состоит из бесчисленного множества точек. Согласно закону целесообразности, предпочтение отдается более простым формам движения.
Однако, сокращая свою длину и ширину до идеального нуля, плоский объект перестает быть плоским и становится точечным объектом. Поэтому двухмерное пространство является закрытым для плоского объекта и открытым для точечного. Идея может проникнуть непосредственно из любой точки двухмерного пространства в трехмерное пространство и наоборот. Для этого нет никакой необходимости идти в «конец» или на границу двухмерного или трехмерного пространства.
Согласно основному закону природы, безразмерные точки, представляющие собой безразмерные элементы двухмерного пространства, не могли бы существовать без своих противоположностей – «точечных дырок», все размеры которых также равны идеальному нулю.
Физическое и идеальное пространство.
Двухмерное пространство называется физическим, если оно образовано движением антифотонов. Двухмерное пространство называется идеальным, если оно образовано движением идеальных точечных пространств.
25. Трехмерное пространство
Рожденный ползать – летать не может.
М.ГорькийИзмерения и координаты.
Через точку пересечения двух взаимно перпендикулярных координатных осей плоскости (двухмерного пространства) можно провести третью координатную ось, перпендикулярную первым двум. Тогда след поступательного движения плоскости в направлении этой третьей оси образует пространство, имеющее три измерения: длину, ширину и высоту. Поэтому мы называем его трехмерным пространством.
Любое трехмерное пространство есть то, в чем может существовать и перемещаться не только точка, не только плоская фигура, но и любое тело, обладающее объемом. Положение любой точки или центра фигуры в трехмерном пространстве в любой момент времени может быть определено тремя независимыми координатами х, у и z. Количество измерений пространства равно количеству всех независимых координат.
Конечное и бесконечное.
Если трехмерное пространство образовано бесконечной плоскостью, движению которой нет конца, то оно представляет собой бесконечное трехмерное пространство. Если же трехмерное пространство ограничено двухмерной замкнутой поверхностью, то оно является конечным трехмерным пространством. Наглядным примером конечного трехмерного пространства служит шар, ограниченный сферической поверхностью. Наиболее интересным примером трехмерного пространства является шарообразное физическое пространство нашей Вселенной, которое с течением времени расширяется от идеального нуля до критических размеров, а затем сжимается от критических размеров до идеального нуля. Время расширения или сжатия физического пространства нашей Вселенной исчисляется десятками миллиардов земных лет.
Ограничение степеней свободы.
Если движение точечного объекта в трехмерном пространстве не ограничивается никакими уравнениями связи, то координаты х, у и z являются независимыми и поэтому трехмерное пространство для такого объекта так и остается трехмерным. Выражаясь точнее, количество степеней свободы объекта в этом случае равно количеству измерений пространства.
Если движение точечного объекта в трехмерном пространстве ограничивается одним уравнением связи, например z = а, то для него трехмерное пространство становится двухмерным, ибо он может двигаться только лишь в плоскости, параллельной осям x и у и отстоящей от них на расстоянии а. Выражаясь точнее, он в трехмерном пространстве имеет две степени свободы.
Читать дальшеИнтервал:
Закладка: