Полина Лосева - Против часовой стрелки. Что такое старение и как с ним бороться
- Название:Против часовой стрелки. Что такое старение и как с ним бороться
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2020
- Город:Москва
- ISBN:978-5-0013-9314-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Полина Лосева - Против часовой стрелки. Что такое старение и как с ним бороться краткое содержание
В своей книге биолог и научный журналист Полина Лосева выступает в роли адвоката современной науки о старении и рассказывает о том, чем сегодня занимаются геронтологи и как правильно интерпретировать полученные ими результаты. Кто виноват в том, что мы стареем? Что может стать нашей защитой от старости: теломераза или антиоксиданты, гормоны или диеты? Биологи пока не пришли к единому ответу на эти вопросы, и читателю, если он решится перейти от размышлений к действиям, предстоит сделать собственный выбор.
Эта книга станет путеводителем по современным теориям старения не только для биологов, но и для всех, кому интересно, как помочь своему телу вести неравную борьбу со временем.
Против часовой стрелки. Что такое старение и как с ним бороться - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Этот процесс называют окислительным стрессом, потому что активные формы кислорода работают как химический окислитель, отбирая электроны у других молекул. О последствиях окислительного стресса мы еще будем говорить в следующих главах, но, забегая вперед, скажу, что он для клетки куда важнее и страшнее, чем любые другие виды стресса.

Сильнее всего достается митохондриям – органеллам, которые отвечают за клеточное дыхание и производство энергии. Именно они поглощают кислород и становятся рассадником свободных радикалов и очагом внутриклеточного бунта. Митохондрии – бывшие бактерии, которые когда-то давно поселились внутри клетки, которая стала нашим общим предком. На память о самостоятельной жизни они сохранили небольшое число собственных генов – митохондриальную ДНК. Она страдает от окислительного стресса гораздо сильнее [149] Khrapko K., Vijg J. Mitochondrial DNA mutations and aging: devils in the details? // Trends in Genetics. 2009 Feb; 25 (2): 91–98.
, чем ДНК в клеточном ядре. Активные формы кислорода образуются прямо у нее под боком, а она от них ничем не отгорожена – у нее нет ни собственной оболочки, ни защитных белков, которые могли бы принять на себя удар.
К тому же митохондриальная ДНК содержит далеко не все гены, необходимые ей для полноценной жизни. Большинство из них давно мигрировали в клеточное ядро. Поэтому многие белки митохондрия не может создать себе сама – например, белки системы репарации. Их приходится заимствовать у клетки, и часто их все равно не хватает. Тогда в митохондриальной ДНК накапливаются мутации, органелла начинает производить дефектные белки, клеточное дыхание перестает быть эффективным, энергии становится меньше, а активных форм кислорода больше – и число мутаций продолжает расти.
Сильнее всего от этого страдают ткани с высокими энергетическими запросами: мышечная и нервная. Поэтому мутации в митохондриальной ДНК некоторые ученые называют причиной многих возрастных синдромов, например саркопении [150] Hiona A., Leeuwenburgh C. The role of mitochondrial DNA mutations in aging and sarcopenia: Implications for the mitochondrial vicious cycle theory of aging // Experimental Gerontology. 2008 Jan; 43 (1): 24–33.
(атрофии мышечной ткани) или болезни Альцгеймера [151] Swerdlow R. H., Burns J. M., Khan S. M. The Alzheimer's disease mitochondrial cascade hypothesis // Journal of Alzheimers Disease. 2010 Jun; 20 (Suppl 2): 265–279.
.
Есть и обратный эффект: для того чтобы исправлять мутации в митохондриях, необходимы запасные "буквы"– нуклеотиды. Когда мутаций много, начинается отток [152] Hämäläinen. R. H. Defects in mtDNA replication challenge nuclear genome stability through nucleotide depletion and provide a unifying mechanism for mouse progerias // Nature Metabolism. 2019 Oct; 1: 958–965.
нуклеотидов из ядра, и белкам репарации, которые собрались чинить ядерные мутации, не хватает подручного материала. Таким образом, поломки в митохондриях влекут за собой поломки и в "основной" ДНК клетки.
5. Ошибки копирования . При делении клетки ДНК необходимо скопировать, чтобы каждый потомок получил полный набор информации. Для этого специальный белковый комплекс – ДНК-полимераза – разъединяет две цепи ДНК и к каждой из них достраивает комплементарную цепь нуклеотидов.
Однако эта белковая машина время от времени ошибается, как и любая живая система. Чтобы скопировать всю ДНК в клетке, ей приходится несколько миллиардов раз провести одну и ту же химическую реакцию: подобрать подходящий нуклеотид и присоединить его к строящейся цепи. Полимераза подхватывает "правильный" нуклеотид с более высокой вероятностью, чем "неправильный", потому что тот лучше укладывается в форму спирали ДНК. Но, даже если один раз на миллион [153] McCulloch S. D., Kunkel T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases // Cell Research. 2008 Jan; 18 (1): 148–161.
белок проведет реакцию с неподходящим нуклеотидом, в клетке появится несколько тысяч новых мутаций.
К счастью, полимеразы умеют вовремя останавливаться и исправлять ошибки: вырезать неверный нуклеотид и проводить реакцию заново. Но и этот механизм иногда дает сбой, и неподходящий нуклеотид остается на месте. Тогда за дело берутся белки репарации, которые тоже время от времени ошибаются – в этом случае ошибка закрепляется в ДНК. В среднем за один раунд деления клетка приобретает около пяти [154] Martincorena I., Campbell I. Somatic mutation in cancer and normal cells // Science. 2015 Sep; 349 (6255): 1483–1489.
новых мутаций.
Мутации в ДНК, как и пятна на обоях, возникают неизбежно. Как бы аккуратно люди ни относились к вещам, рано или поздно кто-нибудь споткнется, прольет что-нибудь на стену или брызнет клюквенным соком. Виноватым может оказаться кто угодно. С ДНК происходит то же самое – с течением времени она так или иначе сталкивается с тем или иным мутагеном. Даже когда ткани защищены от канцерогенов или радиации – например, в материнской утробе, – ДНК в клетках продолжает ломаться. К моменту рождения, как мы уже обсуждали, каждый нейрон человека несет около тысячи мутаций. Это дело рук других мутагенов: окислительного стресса – ведь нервная система активно снабжается кровью, которая приносит с собой кислород, – и ошибок копирования, поскольку клетки зародыша постоянно размножаются.
Беспорядок в хромосомах
Старение ДНК не ограничивается появлением маленьких пятен. В ее нитях – хромосомах – может возникнуть и более существенный беспорядок, который делает жизнь клетки практически невозможной.
Когда свободные радикалы атакуют ДНК, время от времени они попадают по обеим ее цепям одновременно. В этом месте возникает двунитевой разрыв, и хромосома распадается на две части. Белки системы репарации пытаются ухватить концы и вновь соединить хромосому, но не всегда угадывают. Пытаясь стянуть края одной "дыры", они то и дело сшивают друг с другом концы разных дыр. В конечном счете оказывается, что хромосомы обменялись участками и возникла хромосомная аномалия.
Может случиться и так, что хромосомы пропадают или появляются целиком. Обычно в клетках человека 23 пары хромосом, но иногда некоторые из них остаются без пары, это называют анеуплоидией. Она может возникнуть как неудачный результат [155] Andriani G. A., Vijg J., Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain // Mechanisms of Ageing and Development. 2017 Jan; 161 (A): 19–36.
деления клеток. Прежде чем распределить генетический материал по двум полюсам, клетка "выкладывает" хромосомы парами на середину и на некоторое время замирает в таком состоянии. Если к этому моменту, например, в ее ДНК накопилось достаточно мутаций и микроповреждений, белки системы репарации останавливают процесс деления. И клетка "зависает", как бы колеблясь: размножаться или нет. Когда после долгой паузы она наконец решается завершить деление, то может оказаться, что некоторые хромосомы слишком крепко слиплись друг с другом. При попытке растащить их к полюсам они разрываются, обмениваются частями или отходят вместе в одну сторону, таким образом оставляя одну из клеток без нужной хромосомы, а вторую снабжая бессмысленным или даже вредным довеском.
Интервал:
Закладка: