Джон Будро - Реинжиниринг бизнеса [Как грамотно внедрить автоматизацию и искусственный интеллект] [litres]
- Название:Реинжиниринг бизнеса [Как грамотно внедрить автоматизацию и искусственный интеллект] [litres]
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-9614-2704-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Будро - Реинжиниринг бизнеса [Как грамотно внедрить автоматизацию и искусственный интеллект] [litres] краткое содержание
Равин Джесутасан и Джон Будро, признанные авторитеты в вопросах человеческого капитала и автоматизации, не ограничиваются попытками определить, в чем именно роботы заменят людей. Авторы предлагают системный подход в формате пошаговой четырехступенчатой модели, с помощью которой менеджеры сумеют найти оптимальное соотношение искусственного интеллекта и работы специалистов.
Реинжиниринг бизнеса [Как грамотно внедрить автоматизацию и искусственный интеллект] [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Помимо прочего, внедрение роботизированной автоматики способствует масштабированию процессов. Всплеск заявок на ипотеку в связи со снижением кредитных ставок зачастую требует от банка привлечения 40 дополнительных сотрудников в выходные дни. Если же работу выполняет роботизированная система, то можно в субботу и воскресенье задействовать дополнительных роботов, а в понедельник просто отключить их.
Оптимизация трудовой деятельности вследствие замены людей роботизированными системами помогает избежать негативных значений ПУРР, снижая число ошибок. Переключение специалистов на общение с клиентами и принятие решений по нестандартным случаям способствует плавному росту ПУРР, поскольку вследствие улучшения качества работы создается дополнительная ценность.
Стандартная умственная работа, выполняемая индивидуально (плавно растущая ценность): замещение людей и расширение функционала с помощью познавательной автоматики
Подбор персонала требует много времени, и это правило верно для любой организации. Сотрудники кадровых служб тратят массу усилий на размещение вакансий, просмотр резюме кандидатов, оценку их умений и навыков, проведение собеседований. В данном случае речь идет об автоматизации работы с теми же характеристиками, что и в предыдущем случае (стандартная, умственная, выполняемая индивидуально), однако здесь мы переместимся в крайнюю правую часть графика ПУРР. Оптимальной тут будет не столько замена людей машинами, сколько расширение их функционала за счет познавательной автоматики. В этом разделе мы поговорим о ее возможностях.
Познавательная автоматика способна дополнить и расширить некоторые задачи рекрутеров. Так, компания Unilever использует искусственный интеллект, отбирая претендентов в Facebook и других социальных сетях. Соискатели, кликая на рекламное объявление, посылают отклик на вакансию через свой профиль в сети LinkedIn. Unilever получает сотни тысяч таких заявлений от желающих получить работу. Раньше сотрудники кадровой службы просматривали каждое резюме, отделяя достаточно квалифицированных претендентов от тех, кто не обладает нужными навыками и умениями. Теперь же в Unilever задействовали специально созданный алгоритм, анализирующий информацию о квалификации соискателя и отбирая тех, чей профессиональный уровень удовлетворяет необходимым требованиям. Далее кандидаты должны пройти автоматическое тестирование, в которое входят онлайн-игры, ответы на вопросы и запись видео. Искусственный интеллект, следуя заданным параметрам, анализирует всю полученную информацию и выставляет оценку каждому претенденту, определяя тех, кому будет предложено лично явиться на собеседование. По словам представителей Unilever [32] Richard Feloni, “Consumer-Goods Giant Unilever Has Been Hiring Employees Using Brain Games and Artificial Intelligence,” Business Insider , June 28, 2017; http://www.businessinsider.com/unilever-artificial-intelligence-hiring-process-2017–6 .
, после интервью предложение о работе получают около 80 % соискателей, отобранных программой, тогда как до ее внедрения этот показатель составлял лишь 63 %.
Методика, применяемая в Unilever, сходна с той, которую используют банки в помощь кредитным аналитикам. Программа фактически проводит «аудит» соискателя. Подобные системы отбора, основанные на искусственном интеллекте, избавляют рекрутеров от выполнения монотонной работы, что уменьшает затраты и снижает количество ошибок.
Такое использование автоматики способствует переосмыслению деятельности менеджера по кадрам, отделяя шаблонные обязанности от работы, более соответствующей квалификации специалистов, – проведения собеседований. После того как программа быстро и непредвзято оценит основные навыки претендентов, люди смогут сосредоточиться на более важных задачах, выполнение которых приносит компании прибыль. Кроме того, теперь, когда автоматика заменила человека в выполнении шаблонных задач, рекрутеры сумеют уделить больше внимания созданию комфортной атмосферы для многообещающих кандидатов на значимые позиции, помогая им снизить уровень стресса, традиционно возникающего в подобных обстоятельствах, и пройти через процедуру оформления. У них появится время для того, чтобы подробно отвечать на вопросы претендентов, а также решать проблемы, возникающие по ходу дела, помогая им осваиваться на новом месте.
Бывает и так, что познавательная автоматика расширяет поле деятельности человека, взаимодействуя с ним напрямую. Система инвестиционного анализа компании Kensho Technologies предоставляет инвестиционным менеджерам возможность задавать ей устные вопросы на английском языке и в течение нескольких секунд дает ответы на них. Вопрос может звучать, например, так: «Какие отрасли и сектора показывали наилучшие результаты в течение трех месяцев до поднятия процентных ставок и в течение трех месяцев после этого?» Таким образом, искусственный интеллект превратился в настоящего советника, с которым можно поговорить. С его помощью инвестиционные менеджеры, анализирующие различные сценарии будущего, работают быстрее, а финансовые результаты компании стали заметно выше.
Оба примера касаются шаблонных умственных задач, выполняемых специалистом в одиночку и относящихся к той части графика ПУРР, которая описывает плавное увеличение показателя ценности. Познавательная автоматика заменяет человека или расширяет его возможности, помогая добиться дополнительной ценности за счет более качественной оценки – кандидатов или инвестиций. Автоматика способна анализировать больший объем информации, делая это более качественно и объективно. Кроме того, как мы убедились, она дает возможность переключить сотрудников на выполнение задач, более прибыльных для организации.
Стандартная умственная работа, требующая взаимодействия (быстро растущая ценность): расширение функционала с помощью познавательной автоматики
Как организовать техническое обслуживание самолетного или автомобильного парка или, скажем, большого числа ветроэнергетических установок? Решением таких задач занимается компания General Electric (GE). Традиционно целая армия опытных и квалифицированных специалистов GE разъезжала по местам, где базировалась техника клиентов. В их обязанности входило принятие решений о том, какого рода обслуживание требуется в каждом конкретном случае. При этом специалисты руководствовались опытом и здравым смыслом, обращая внимание на то, как долго техника находится в эксплуатации и в каких условиях она работает, насколько велика нагрузка, а также на многие другие факторы. Кроме того, в задачи инженеров входило делиться своими наработками и лучшими найденными методиками с коллегами, описывая случаи из практики и отправляя материалы в электронные бюллетени и центры обработки данных, где они были доступны всем сотрудникам. Это была стандартная деятельность: выполнение ряда одинаковых действий в необходимой последовательности. Она предполагала постоянное взаимодействие (специалисты внутри каждой команды совместно занимались выполнением задач и сотрудничали с коллегами через общие обучающие платформы) и носила умственный характер, поскольку требовала принятия решений о том, какая информация необходима, а также последующего анализа этой информации с целью выбора наилучшей стратегии техобслуживания. Конечно, деятельность инженера включает в себя и физический труд (то есть непосредственно работу с техникой), но сейчас мы поговорим о сборе и анализе данных, а также о последующей диагностике. Традиционная организация производственного процесса приводила к значительному простою оборудования: клиентам то и дело приходилось ждать, пока им назначат дату обслуживания, либо техническая команда сталкивалась с нестандартной ситуацией, требовавшей получения дополнительных данных, либо центральная информационная платформа перезагружалась, и необходимо было выжидать, чтобы получить актуальные данные о новых решениях, найденных инженерами из разных бригад.
Читать дальшеИнтервал:
Закладка: