Джон Будро - Реинжиниринг бизнеса [Как грамотно внедрить автоматизацию и искусственный интеллект] [litres]
- Название:Реинжиниринг бизнеса [Как грамотно внедрить автоматизацию и искусственный интеллект] [litres]
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-9614-2704-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Будро - Реинжиниринг бизнеса [Как грамотно внедрить автоматизацию и искусственный интеллект] [litres] краткое содержание
Равин Джесутасан и Джон Будро, признанные авторитеты в вопросах человеческого капитала и автоматизации, не ограничиваются попытками определить, в чем именно роботы заменят людей. Авторы предлагают системный подход в формате пошаговой четырехступенчатой модели, с помощью которой менеджеры сумеют найти оптимальное соотношение искусственного интеллекта и работы специалистов.
Реинжиниринг бизнеса [Как грамотно внедрить автоматизацию и искусственный интеллект] [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Руководители General Electric поставили перед собой следующие стратегические цели: существенное снижение времени простоя техники, проведение техобслуживания только в случае необходимости, обеспечение полевых специалистов более полной и соответствующей их потребностям информацией о лучших методах выполнения работ. Компания сумела всего этого добиться, переосмыслив деятельность технических специалистов и предоставив им в помощь искусственный интеллект со способностью к обучению, задействовав одновременно возможности сенсоров, большие данные и интернет вещей [33] Randy Bean and Thomas H. Davenport, “How AI and Machine Learning Are Helping Drive the GE Digital Transformation,” LinkedIn, June 8, 2017; https://www.linkedin.com/pulse/how-ai-machine-learning-helping-drive-ge-digital-tom-davenport .
. В General Electric создали так называемых «цифровых близнецов» – электронные копии обслуживаемой аппаратуры, включая самолетные двигатели, газовые турбины и ветроэнергетические установки. Сенсоры, находившиеся на реальном оборудовании, собирали данные об индивидуальных показателях техники и условиях ее работы (температура, вибрация, уровень шума и т. д.). Эти данные организовывались таким образом, что созданный с их помощью «цифровой близнец» того или иного оборудования полностью воспроизводил его работу. Специалисты GE программировали «цифрового близнеца», отрабатывая всевозможные варианты сценариев (различные нагрузки, продолжительность и условия работы и т. д.). Используя данные, полученные на программах-симуляторах, сотрудники General Electric получили возможность прогнозировать поломки и определять, какого рода ремонтные работы необходимы для реальных объектов. Программа искусственного интеллекта также в состоянии самостоятельно составлять графики техобслуживания, отправлять информацию и описания лучших методов работы полевым командам технических специалистов. «Цифровые близнецы» могут создаваться и для целых массивов оборудования (например, завода или фабрики) и техники (скажем, парка самолетов или грузовиков), давая возможность анализировать не только работу каждого отдельного агрегата, но и всего парка техники в целом.
Информация от тысяч реальных агрегатов постоянно и безостановочно поступает в программы «цифровых близнецов». Поскольку обстоятельства, влияющие на работу механизмов, и, соответственно, актуальный график технического обслуживания со временем и под влиянием разного рода обстоятельств неизбежно меняются, невозможно найти единую формулу и бездумно ее использовать. Между тем, пока техобслуживанием занимались только люди, зачастую стандартная схема действий оказывалась наилучшим из доступных решений, поскольку обеспечить индивидуальный подход в каждой из возможных ситуаций было попросту нереально. А вот с появлением автоматики возникла возможность по мере необходимости менять оптимальные алгоритмы и методики, используя обновленные данные. Системы машинного обучения позволяют технике обучаться за счет новой информации, постепенно модифицируя проактивные модели обслуживания, идентифицируя новые шаблоны работы, аномалии и направления развития. Алгоритм, обнаружив эффективное решение для одного вида техники или конкретной ситуации, способен найти для него иное применение, предложив новые стандарты для других областей деятельности. К 2017 г. в системе General Electric работало уже около 750 000 «цифровых близнецов», и к ним постоянно добавлялись новые.
В данной ситуации машинное обучение требует сочетания сенсоров, интернета вещей, больших данных и Web 2.0. Система, неспособная к машинному обучению, вынуждена полагаться на наблюдения одного клиента либо на то, что сможет усвоить и передать другим единственная команда инженеров. Оптимальная комбинация специалистов и системы, способной к машинному обучению, позволяет General Electric оперировать значительно более объемным массивом данных, аналитики и знаний, полученных от каждого из предприятий, использующих ее продукцию. В дело вступает сетевой эффект: чем большему учится компания, тем больше выгод получают клиенты, выбирая двигатели производства General Electric. В результате сеть растет, знаний становится еще больше, и этот процесс продолжается бесконечно.
Данная модель работы General Electric не только позволяет механикам продвигаться вверх по третьему участку графика ПУРР (плавно растущая ценность), но и создает перспективы для выхода на четвертый его участок (быстро растущая ценность). Это происходит благодаря способности техники за счет машинного обучения расширять возможности людей в области разработки оптимальных графиков и методик ремонта. Теперь инженеры появляются на площадке, уже владея информацией о том, какие виды технического обслуживания необходимы той или иной машине. Их знания базируются не только на собственном опыте, но и на данных, снятых с аналогичного оборудования, а также предоставленных «цифровым близнецом» машины. В итоге профессиональная ценность каждой из инженерных команд значительно возрастает, ведь они работают куда эффективнее, прибывая именно туда, где они необходимы, причем в самый оптимальный момент.
Нестандартная умственная работа, выполняемая индивидуально (быстро растущая ценность): расширение возможностей с помощью познавательной автоматики
Проектирование и создание нового продукта – нестандартная умственная работа, выполняемая индивидуально. Применение познавательной автоматики ускоряет процесс разработки продукта, расширяя возможности специалистов по закупкам, помогая им более ясно понимать перспективы.
Приложение Black Book, созданное концерном Coca-Cola, призвано поддержать стратегическую цель компании – производство апельсинового сока Simply Orange, вкус которого будет оставаться неизменным, невзирая на изменение вкуса исходного сырья из-за погодных условий и других факторов, влияющих на урожай данного вида фруктов в разных уголках мира [34] Ellen Messmer, “Coca-Cola Co.’s ‘Black Book’ Application Squeezes the Best Out of OJ,” Network World , May 15, 2014; https://www.networkworld.com/article/2176933/applications/coca-cola-co-s-black-book-application-squeezes-best-out-of-oj.html .
. В основе модели Black Book лежит познавательная автоматика, использующая алгоритмы, которые помогают предсказывать погоду и прогнозировать урожайность апельсинов. Результаты ее работы поступают к специалистам по поставкам, которые, основываясь на них, закупают цитрусовые, соответствующие заданным параметрам. Приложение обновляет информацию ежеминутно, внося изменения в планы поставок, если где-то природные катаклизмы вдруг угрожают урожаю. В прошлом этот процесс осуществляли специалисты по планированию, которые были не в состоянии достаточно быстро собрать и проанализировать необходимые сведения. Запоздалая и неадекватная реакция на изменение метеорологической ситуации зачастую приводила к различиям в количестве и качестве получаемого продукта. Теперь приложение Black Book снабжает экспертов точными рекомендациями в самые сжатые сроки, благодаря чему ценность их работы быстро растет.
Интервал:
Закладка: