Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним
- Название:Эта странная математика. На краю бесконечности и за ним
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2021
- Город:Москва
- ISBN:978-5-17-119879-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним краткое содержание
В формате PDF A4 сохранен издательский макет.
Эта странная математика. На краю бесконечности и за ним - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
Но гуголплекс неизмеримо больше. На всей планете не хватит бумаги, да что там бумаги на Земле, во всей видимой Вселенной не хватит вещества, чтобы записать все знаки гуголплекса, даже если изображать нули размером с протоны или электроны. Гуголплекс намного больше самого огромного из чисел, каким ученые древности дали названия, включая великанское “невыразимое”. И все же он не так велик, как число, которое получил в 1933 году математик из ЮАР Стэнли Скьюз, работая над проблемой в области простых чисел. Названное в честь этого ученого, число Скьюза представляет собой максимально возможное значение (верхний предел), которое получается при решении математической задачи, связанной с распределением простых чисел. Знаменитый британский математик Годфри Харолд Харди, наставник Рамануджана [46] Сриниваса Рамануджан Айенгор – знаменитый индийский математик-самоучка.
и автор популярной “Апологии математика”, назвал его на тот момент “самым большим числом, когда-либо использованным в математике для какой-либо конкретной цели”. Его значение – 10 10^10^34, или, если точнее, 10 10^8852142197543270606106100452735038,55. Для того чтобы рассчитать этот колоссальный по величине верхний предел, Скьюзу пришлось исходить из предположения о справедливости гипотезы Римана, над которой, как мы видели в седьмой главе, математики до сих пор ломают голову. Два десятилетия спустя он объявил, что рассчитал еще одно число, в связи с той же задачей, но на этот раз не прибегая к предположению о верности гипотезы Римана. Оно получилось еще больше – 10 10^10^964плюс-минус несколько триллионов.
От чистой математики не отставала и физика со своими головоломными проблемами, решение которых также время от времени приводило к появлению гигантских чисел. На этом фронте одним из первых стал французский математик, физик-теоретик и ученый-энциклопедист Анри Пуанкаре, среди многочисленных трудов которого – исследования того, сколько времени требуется физической системе, чтобы вернуться в определенное исходное состояние. Когда речь идет о вселенной, так называемое время возвращения Пуанкаре – это промежуток времени, необходимый для того, чтобы вещество и энергия, пройдя через немыслимое количество преобразований, перераспределились до состояния, которое в точности, вплоть до субатомного уровня, повторяет начальное. По оценке канадского теоретика Дона Пейджа, в прошлом аспиранта Стивена Хокинга, для наблюдаемой Вселенной время возвращения Пуанкаре составляет 10 10^10^10^2,08лет. Это число больше гуголплекса и находится где-то посередине между малым и большим числами Скьюза. Пейдж также рассчитал максимальное время возвращения Пуанкаре для любой вселенной определенного типа. Оно еще больше – 10 10^10^10^10^1,1лет, что превосходит и второе из чисел Скьюза. Что касается самого гуголплекса, Пейдж отметил, что тот приближенно равен количеству микросостояний в черной дыре, сравнимой по массе с галактикой Андромеды.
И “невыразимое”, и гуголплекс, и числа Скьюза титанически велики для постижения разумом. Но они и рядом не стояли с числом, названным в честь американского математика Рональда Грэма, впервые описавшего его в своей статье 1977 года. Так же как и числа Скьюза, число Грэма – результат работы над серьезной математической проблемой, на этот раз связанной с теорией Рамсея. Приближаться к числу Грэма нам придется постепенно, подобно альпинистам, покоряющим высочайшие вершины мира. Первым шагом будет знакомство с особым способом записи больших чисел, изобретенным американским ученым в области информатики Дональдом Кнутом и известным как стрелочная нотация. Она основана на том факте, что умножение всегда можно представить как многократное сложение, а возведение в степень – как многократное умножение. Например, 3 × 4 – это то же самое, что 3 + 3 + 3 + 3, а 3 4 = 3 × 3 × 3 × 3. В нотации Кнута возведение в степень обозначается одиночной стрелкой, направленной вверх: например, гугол, или 10 100, записывается как 10↑100, а три в кубе, или 3 3, – как 3↑3. Повторное возведение в степень, для которого нет специального стандартного обозначения, записывается в виде двух стрелок: таким образом, 3↑↑3 = 3 3^3. Операция ↑↑, называемая тетрацией (поскольку она идет четвертой в иерархии после сложения, умножения и возведения в степень), – штука гораздо более сильная, чем может показаться на первый взгляд. 3↑↑3 = 3 3^3 = 3 27, что равно 7 625 597 484 987.
Тетрацию можно представить и в виде степенной башни (кошмар любого наборщика). Если с числом a требуется произвести операцию тетрации порядка k , это записывается следующим образом:

Иначе говоря, число a возводится в степень, представленную башней высотой в k – 1 этаж.
Темп, с которым растет результат математического действия при добавлении новых стрелок, просто ошеломляет: если 3 × 3 = 9, то 3↑3 дает 27, а 3↑↑3 уже больше 7,6 триллиона (13-значное число). Результат тетрации числа 4 еще поразительнее: 4↑↑4 = 4↑4↑4↑4 = 4↑4↑256, что приблизительно равно 10↑10↑154 – то есть больше гуголплекса (10↑10↑100). Перевалить за это огромное число нам удалось с помощью всего-то одной четверки и нескольких простых значков.
Но раз мы сделали такой гигантский шаг, перейдя от простого возведения в степень к тетрации, то, наверное, если добавить еще одну стрелку, можно получить что-то еще более впечатляющее? Что ж, интуиция нас не обманывает. При повторной тетрации, называемой пентацией, результат вырастает так, что аж дух захватывает! Ничем не примечательная запись 3↑↑↑3 – это то же, что 3↑↑3↑↑3, что, в свою очередь, равно 3↑↑7 625 597 484 987, или 3↑3↑3↑3…↑3, – а это уже степенная башня высотой в 7 625 597 484 987 троек. Если башни в 4 этажа достаточно, чтобы получить число, превышающее гуголплекс, только представьте себе, что получится в этом случае. Это невообразимо большое число: человеческой жизни не хватит, чтобы записать его даже в виде степенной башни . В напечатанном виде такая башня дотянется до самого Солнца. Это число, известное как “тритри”, значительно больше любого из тех, что мы упоминали до сих пор; осмыслить его нам, простым смертным, почти невозможно. А ведь мы еще только начали. Тритри, при всей своей величине, – ничтожная песчинка рядом с величественным пиком, который представляет собой число Грэма. Добавив еще одну стрелку, получим 3↑↑↑↑3 = 3↑↑↑3↑↑↑3 = 3↑↑↑тритри. Давайте разберемся, что это значит. В нагромождении степенных башен самая первая у нас 3; вторая – 3↑3↑3, или 7 625 597 484 987; третья – 3↑3↑3↑3…↑3 c 7 625 597 484 987 тройками, то есть тритри; четвертая – 3↑3↑3↑3…↑3, где тритри троек; и так далее. 3↑↑↑↑3 – это башня под номером тритри. Добавив к трем стрелкам еще одну, мы шагнули на гигантское расстояние, так далеко, что уму непостижимо. А пришли всего лишь к g 1 – самому первому из серии чисел g , необходимых для того, чтобы добраться до вершины, то есть до самого числа Грэма. После передышки в базовом лагере g 1продолжаем подъем до следующего лагеря, g 2. Помните, что, добавляя в запись числа всего одну стрелку, мы каждый раз увеличиваем его на чудовищную величину. Теперь внимание! Число g 2 – это 3↑↑↑↑…↑3 с количеством стрелок, равным g 1. Даже робкая попытка осмыслить его масштаб, понять, насколько грандиозными могут быть числа, вызывает головокружение. Всего одна дополнительная стрелка увеличивает результат на феноменальную величину, а в числе g 2таких стрелок g 1. В числе g 3, как вы уже наверняка догадались, g 2стрелок, в числе g 4 – g 3стрелок и так далее. А само число Грэма, G , – это g 64. В 1980 году оно было занесено в “Книгу рекордов Гиннесса” как самое большое число, когда-либо использованное в математическом доказательстве.
Читать дальшеИнтервал:
Закладка: