Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним
- Название:Эта странная математика. На краю бесконечности и за ним
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2021
- Город:Москва
- ISBN:978-5-17-119879-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним краткое содержание
В формате PDF A4 сохранен издательский макет.
Эта странная математика. На краю бесконечности и за ним - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Возьмите две копии одной картинки. Одну из них разгладьте на столе, а вторую хорошенько помните (не разрывая) и положите сверху. Неоспоримый факт: как минимум одна точка изображения на мятой копии окажется непосредственно над соответствующей точкой на разглаженном листе. (Строго говоря, расчеты, объясняющие этот феномен, оперируют непрерывными величинами, а материя реального мира имеет зернистую природу, поскольку состоит из атомов и прочего, – и тем не менее получающийся результат служит весьма неплохим приближением.) Тот же эффект наблюдается и с трехмерными объектами: сколько бы вы ни мешали воду в стакане, как минимум одна из молекул после перемешивания окажется на том же месте, что и до него. Первым математиком, опубликовавшим доказательство этого феномена в начале XX века, был голландец Лёйтзен Брауэр, поэтому соответствующая теорема получила название “теорема Брауэра о неподвижной точке”.
В 1912 году Брауэр доказал еще одну любопытную теорему, сформулированную ранее выдающимся французским математиком Анри Пуанкаре, – так называемую теорему о причесывании ежа. Речь в ней идет о том, что, как бы вы ни старались пригладить иголки у свернувшегося в клубок ежа, невозможно добиться того, чтобы они лежали гладко в каждой точке, – где-то все равно будут стоять торчком. Брауэр (и Пуанкаре), правда, рассуждал не о ежах, а о более скучных вещах: непрерывном касательном векторном поле на сфере, которое должно иметь как минимум одну точку, где вектор обращается в ноль. Но суть та же самая. На практике это означает, например, следующее: поскольку скорость ветра у земной поверхности является векторным полем, теорема гарантирует, что на планете обязательно должно быть место, где ветер не дует. Еще одна общеизвестная метеорологическая истина, тесно связанная с теоремой о неподвижной точке, называется теоремой Борсука – Улама. Она гласит: в любой момент времени на Земле существуют две точки, расположенные на ее противоположных сторонах, где температура и давление абсолютно одинаковы. Вы вправе сказать, что подобное вполне может произойти и по чистой случайности, но теорема Борсука – Улама дает математическую гарантию, что это всегда так.
Еще один странный, но истинный факт, который выводится из теоремы Борсука – Улама, – это так называемая теорема о бутерброде. Согласно ей, любой бутерброд с ветчиной и сыром можно одним разрезом рассечь таким образом, чтобы в обоих получившихся кусочках было поровну и хлеба, и ветчины, и сыра. На самом деле для этого даже не обязательно, чтобы ингредиенты касались друг друга: хлеб может быть в хлебнице, сыр в холодильнике, а ветчина на столе. Или они вообще могут находиться в разных частях галактики. Так или иначе, всегда существует такой плоский разрез (другими словами, такая плоскость), который рассек бы все три объекта ровно напополам.
Все эти странные теоремы – о неподвижной точке, о причесывании ежа, о бутерброде, Борсука – Улама – уходят корнями в благодатную почву топологии (от греческого слова tópos – “место”). В быту нам нечасто приходится с ней сталкиваться. Любой из нас знаком с геометрией – древней наукой о форме, размере и относительном расположении фигур вроде треугольников, эллипсов, пирамид, сфер и прочих. Топология связана и с геометрией, и с теорией множеств и изучает, как мы уже упоминали, свойства тел, которые не изменяются даже тогда, когда тело сгибают или растягивают, – эти свойства называют топологическими инвариантами. Примером такого инварианта может служить, скажем, число измерений, связность или количество элементов, составляющих тот или иной объект.
Начало топологии как дисциплине было положено в XVII веке, когда немецкий ученый-энциклопедист Готфрид Лейбниц поднял вопрос о разделении геометрии на две части: geometria situs , или геометрию положения, и analysis situs , то есть анализ, или разбор, положения. Первая, куда входит фактически та геометрия, что мы изучаем в школе, имеет дело со знакомыми нам понятиями: углами, длинами, фигурами, тогда как analysis situs занимается абстрактными структурами, независимыми от этих понятий. Швейцарский математик Леонард Эйлер впоследствии опубликовал одну из первых работ по топологии, в которой доказал, что невозможно прогуляться по всем семи мостам старого портового города Кёнигсберга в Пруссии (ныне – Калининград в России), не пройдя ни по одному из них дважды. Результат не зависел ни от размеров мостов, ни от расстояний между ними, а только от того, как они соединяли между собой участки суши – острова в русле реки и ее берега. Эйлеру удалось найти общее правило для решения такого рода задач и тем самым дать дорогу в жизнь новой области исследований – разделу топологии под названием “теория графов” [52] В современной математике теорию графов нельзя считать разделом топологии. – Прим. науч. ред .
.

Семь мостов Кёнигсберга через реку Преголя.
Эйлер также открыл ставшую знаменитой формулу многогранников (трехмерных тел с плоскими многоугольными гранями): В – Р + Г = 2, где В, Р и Г – число вершин, ребер и граней соответственно. И опять-таки она имеет прямое отношение к топологии – ведь она оперирует свойствами геометрических тел, не зависящими от количественных измерений.
Еще одним пионером в области топологии стал Август Мёбиус, изучивший свойства перекрученной на пол-оборота и свернутой в кольцо ленты, которая сегодня носит его имя – несмотря на то, что его соотечественник Иоганн Листинг опубликовал результаты собственных исследований ее свойств на несколько лет раньше, в 1861 году. Если полоску бумаги перекрутить на 180 градусов, а затем склеить концы вместе, получится кольцо с односторонней поверхностью – это легко проверить, ведя карандашом посередине полосы линию, пока та не вернется в исходную точку. Пол-оборота, соединение краев – и бумажная полоска превращается в ленту Мёбиуса, объект, который в глазах тополога коренным образом отличается от простого кольца или открытого с двух сторон цилиндра [53] Справедливости ради отметим, что с точки зрения самого базового понятия “деформируемости” в топологии – гомотопической эквивалентности – и лента Мёбиуса, и цилиндр эквивалентны окружности. Однако можно определить деформацию и так, чтобы эти объекты были различны, то есть не деформируемы один в другой (например, используя гомеоморфность, обсуждаемую далее). – Прим. науч. ред .
. Любой разрыв в геометрическом теле или соединение вместе его концов превращает его в топологически новое тело. Отсюда следует еще одна особенность топологии: она хорошо подходит для описания внезапных скачкообразных изменений состояния системы – как обнаружили лауреаты Нобелевской премии по физике 2016 года.
Интервал:
Закладка: