Владимир Арнольд - Теория катастроф
- Название:Теория катастроф
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1990
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Арнольд - Теория катастроф краткое содержание
Теория катастроф - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Теорема Пифагора, бывшая в свое время высшим достижением математической культуры, низведена в современном аксиоматическом изложении евклидовой геометрии до малозаметного определения: евклидовой структурой в линейном пространстве называется линейная по каждому аргументу симметрическая функция пары векторов ( скалярное произведение ), для которой скалярный квадрат любого ненулевого вектора положителен.
Определение симплектической структуры в линейном пространстве аналогично: это линейная по каждому аргументу кососимметрическая функция пары векторов ( кососкалярное произведение ), которая невырождена (любой ненулевой вектор не всем векторам косоортогонален, т. е. его кососкалярное произведение с некоторыми векторами ненулевое).
Пример . Назовем кососкалярным произведением двух векторов на ориентированной плоскости ориентированную площадь параллелограмма, натянутого на эти векторы (т. е. определитель матрицы, составленной компонент векторов). Это произведение — симплектическая структура на плоскости.
В трехмерном пространстве (и вообще в нечетномерном пространстве) симплектических структур нет. Симплектическую структуру в четырехмерном (и вообще в четномерном) пространстве легко построить, представив пространство в виде суммы двухмерных плоскостей: кососкалярное произведение распадается в сумму площадей проекций на эти плоскости.
Все симплектические пространства фиксированной размерности изоморфны (как и все евклидовы). Мы будем называть кососкалярное произведение двух векторов "площадью" натянутого на них параллелограмма.
Каждое линейное пространство в евклидовом пространстве имеет ортогональное дополнение , его размерность равна коразмерности исходного подпространства.
В симплектическом пространстве определено косоортогоналыюе дополнение к линейному подпространству: оно состоит из всех векторов, кососкалярные произведения которых со всеми векторами подпространства равны нулю. Размерность косоортогонального дополнения также равна коразмерности исходного подпространства. Например, косоортогональное дополнение к прямой на плоскости — сама эта прямая.
Линейное подпространство, являющееся своим собственным косоортогональным дополнением, называется лагранжевым подпространством . Его размерность равна половине размерности исходного симплектического пространства.
Риманова структура на многообразии задается выбором евклидовой структуры в пространстве, касательном к многообразию в любой точке.
Точно так же симплектическая структура на многообразии задается выбором симплектической структуры в каждом его касательном пространстве; однако в отличие от риманова случая эти структуры не произвольны, а связаны между собой, как это объяснено ниже.
Риманова структура на многообразии позволяет измерять длины кривых на нем, суммируя длины малых векторов, составляющих кривую. Точно так же симплектическая структура позволяет измерять "площади" ориентированных двухмерных поверхностей, лежащих в симплектическом многообразии (суммируя "площади" составляющих поверхность малых параллелограммов). Дополнительное условие, связывающее симплектические структуры в разных касательных пространствах, таково: "площадь" всей границы любой трехмерной фигуры равна 0.
В линейном симплектическом пространстве можно ввести структуру симплектического многообразия, определив кососкалярное произведение приложенных в любой точке векторов как кососкалярное произведение векторов, полученных из них параллельным переносом в начало. Легко проверить, что условие согласования здесь выполнено.
Существует много неизоморфных друг другу римановых структур в окрестности точки плоскости или пространства большего числа измерений (для различения их Риман и ввел свою кривизну).
В отличие от римановых многообразий все симплектические многообразия фиксированной размерности в окрестности каждой своей точки изоморфны (отображаются друг на друга с сохранением "площадей"). Таким образом, локально каждое симплектическое многообразие изоморфно стандартному симплектическому линейному пространству. В таком пространстве можно ввести координаты (р 1, ..., р n, q 1, ..., q n) так, что кососкалярное произведение равно сумме ориентированных площадей проекций на плоскости (р 1, q 1), . . ., (р n, q n).
Подмногообразие симплектического пространства называется лагранжевым многообразием , если его касательная плоскость в каждой точке лагранжева.
Расслоение симплектического пространства на подмногообразия называется лагранжевым расслоением если слои лагранжевы.
Всякое лагранжево расслоение локально изоморфно стандартному расслоению фазового пространства над конфигурационным, (р, q) → q (слои — пространства импульсов, q = const). Конфигурационное q-пространство называется базой этого расслоения.
Предположим теперь, что в пространстве лагранжева расслоения дано еще одно лагранжево многообразие. Тогда возникает гладкое отображение этого лагранжева многообразия на базу лагранжева расслоения (т. е. на конфигурационное пространство с координатами q i): каждой точке (р, q) лагранжева многообразия сопоставляется точка q конфигурационного пространства.
Полученное отображение многообразий одинаковой размерности n называется лагранжевым отображением , а его особенности — лагранжевыми особенностями.
Это — специальный класс особенностей гладких отображений многообразий одинаковой размерности. Для этого класса построена классификационная теория, аналогичная общей теории особенностей.
При n = 2 лагранжевы особенности общего положения исчерпываются складками и сборками, как и общие особенности (впрочем, лагранжева сборка имеет два лагранжево неэквивалентных [7] Лагранжева эквивалентность двух лагранжевых особенностей — это отображение первого лагранжева расслоения на второе, переводящее первую симплектическую структуру во вторую и первое лагранжево подмногообразие во второе.
варианта).
Особенности лагранжевых отображений трехмерных лагранжевых многообразий общего положения уже не все встречаются среди обычных особенностей общего положения.
Теперь мы покажем, что градиентные, нормальные и гауссовы особенности лагранжевы .
1. Пусть F — гладкая функция от р. Тогда многообразие q = ∂F/∂p лагранжево. Поэтому особенности градиентного отображения лагранжевы.
2. Рассмотрим гладкое подмногообразие в евклидовом пространстве. Рассмотрим множество всех перпендикулярных ему векторов (во всех его точках q). Многообразие, образованное векторами р, приложенными в точках р + q, лагранжево. Нормальное отображение можно рассматривать как лагранжево отображение этого многообразия на базу, (р, р + q) → (р + q).
Читать дальшеИнтервал:
Закладка: